कृषि और सम्बंधित गतिविधियाँ में निवेश के लिए सांकेतिक इकाई लागत : 2023-24

Indicative Unit Cost of Investments in Agriculture and Allied Activities : 2023-24

तमिलनाडु और केंद्र शासित प्रदेश पुडुचेरी
Tamil Nadu \& Union Territory of Puducherry

राष्ट्रीय कृषि और ग्रामीण विकास बैंक
National Bank for Agriculture and Rural Development
तमिलनाडु क्षेत्रीय कार्यालय, चेन्नै
TAMIL NADU REGIONAL OFFICE, CHENNAI

ग्रामीण समृद्धि के लिए राष्ट्र का विकास बैंक

## ध्येय

सहभागिता, संधारणीयता और समानता पर आधारित वित्तीय और गैर-वित्तीय सहयोगों, नवोन्मेषों, प्रौद्योगिकी और संस्थागत विकास के माध्यम से समृद्धि लाने के लिए कृषि और ग्रामीण विकास का संवर्धन

## Vision

Development Bank of the Nation for Fostering Rural Prosperity

## Mission

Promote sustainable and equitable agriculture and rural development through participatory financial and non-financial interventions, innovations, technology and institutional development for securing prosperity

कृषि और सम्बंधित गतिविधियाँ में निवेश के लिए सांकेतिक इकाई लागत : 2023-24

Indicative Unit Cost of Investments in Agriculture and Allied Activities : 2023-24


NABARD

राष्ट्रीय कृषि और ग्रामीण विकास बैंक
NATIONAL BANK FOR AGRICULTURE AND RURAL DEVELOPMENT

तमिलनाडु क्षेत्रीय कार्यालय, चेन्नै
TAMILNADU REGIONAL OFFICE, CHENNAI

| Sl. No | Particulars | Page No. |
| :---: | :--- | :---: |
| 1. | Minor Irrigation | 1 |
| 2. | Land Development | 7 |
| 3. | Farm Mechanisation | 8 |
| 4. | Plantation \& Horticulture | 10 |
| 5. | Animal Husbandry | 32 |
| 6. | Forestry \& Wasteland Development | 34 |
| 7. | Fisheries | 47 |
| 8. | Renewable Sources of Energy \& Waste Management | 54 |
| 9. | Integrated Farming Systems (IFS) | 55 |


| Title | $:$ | Indicative Unit Cost of Investments in Agriculture and Allied Activities 2023-24 |
| :--- | :--- | :--- |
| Written and | $:$ | Department of Refinance |
| Published by | $:$ | NABARD, Tamil Nadu Regional Office, Chennai |
| Date of Publishing | $:$ | August 2023 |
| Designing \& Printing | $:$ | Crescent Art Printers, Chennai |
| Place of Printing | $:$ | Chennai |
| Number of Copies | $:$ | 250 |
| Contact | $:$ | National Bank for Agriculture and Rural Development |
|  |  | Tamil Nadu Regional Office <br> No. 48, Mahatma Gandhi Road, Nungambakkam, <br> Chennai - 6oo o34. |
|  | $:$ | o44-2830 4444 Fax : o44-28275732 |
| Phone | $:$ | chennai@nabard.org |
| E-mail | www.nabard.org |  |
| Website | www.youtube.com/nabardonline |  |

© 2023 National Bank for Agriculture and Rural Development. Unless otherwise stated in this document, no part of this document may be reproduced or transmitted in any form by any means without written authorization from NABARD.

## Disclaimer

NABARD does not accept any financial liability to anyone using this report for any purpose. The cost and parameters suggested are based on information available with NABARD. All Unit costs are indicative in nature and there may be variations based on field / local conditions. Banks / government agencies may assess the credit requirement, considering the field level situations and keeping in view the technical feasibility, financial viability and also the bankability of the investments


## FOREWORD

Investment in agriculture and allied activities leads to asset creation which yield benefits over an extended period .While public investment is limited to larger projects, private investment is crucial for bringing about wholesome development of the farmer. Such investment is not possible without timely and adequate credit flow, which leads to better penetration of institutional finance to farmers. A strong rural credit delivery mechanism can ensure the smooth movement of credit flow to agriculture and allied sectors.

NABARD has been supporting the banking institutions in credit planning, providing refinance assistance and other support for horizontal and vertical expansion of credit flow to agriculture, allied and other priority sectors. Capital formation in the agriculture sector is essential for the inclusive growth of the sector. Investment activities in agriculture and allied sectors need to be encouraged to increase the farmers' income, as prioritized by the Government of India.

In this direction, NABARD prepares the Indicative Unit Cost annually, for various agricultural and related investments, in consultation with all stakeholders viz., financial institutions, Government departments concerned and domain experts from within and outside NABARD. The unit costs so prepared are finalised by the State Level Unit Cost Committee (SLUCC).

The unit cost for FY 2023-24 has been prepared based on the SLUCC meeting held on 21 June 2023. This booklet serve as a guide for banks to finance technically feasible and financially viable projects to meet the increasing credit needs of the agri and allied sectors. The Unit Costs given in this booklet are indicative in nature and it is obvious that it could vary marginally from region to region even within the state. This edition of Indicative Unit Cost includes new activities under Fisheries (Freshwater backyard ornamental fish rearing), Agroforestry (Teak, Shisham, Mahogany, Gmelina, Sandalwood, Red sanders, and Spiny bamboo) and Horticulture (Tissue culture banana, Dragon fruit, Pandal based vegetable cultivation) to enable and encourage banks to finance these activities proactively.

I acknowledge the contribution made by all stakeholders in bringing out this booklet. I am sure that this booklet would prove to be useful for the bankers and would guide them in financing investment activities in agriculture and allied sectors leading to sustainable agricultural and rural development in the State of Tamil Nadu and Union Territory of Puducherry.

## R Shankar Narayan <br> Chief General Manager

## 1. MINOR IRRIGATION

## A) New Wells

| Sl. <br> No. | Item of Investment | Specifications | Unit Cost (₹) |
| :---: | :--- | :--- | :---: |
| 1 | Dug-well in Sandstone and <br> Metamorphic | dia. 3m, depth 18 m , depth of lining 8m | $3,50,000-4,50,000$ |
| 2 | Tube well in Alluvium <br> formations | dia. 8" depth 300'(100m), Casing and <br> Filter Pipes for entire depth | $4,00,000-6,00,000$ |
| 3 | Borewell in hard rock | dia. 9", depth 300'(100m) | $1,80,000-2,10,000$ |
| 4 | Dug well | dia. 4.5m, depth 15 m, depth of lining 4 m | $2,50,000-3,00,000$ |
| 5 | Dug cum bore well | dia. 5 m, depth 15 m, depth of lining 4 m, <br> boring $150 \mathrm{~mm} \times 15 \mathrm{~m}$ | $2,50,000-3,50,000$ |

Rates may vary according to site with respect to lead.
Repayment period including gestation period : 11-15 years
Gestation period : 23 months; Instalment frequency : yearly

| $\begin{array}{\|l\|} \hline \text { SI. } \\ \text { No. } \\ \hline \end{array}$ | Item of Investment | Unit Cost (₹) |
| :---: | :---: | :---: |
| $\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$ | A. PUMPSETS <br> Submersible Pumpsets <br> 3 HP <br> 5 HP <br> 7.5HP | $\begin{aligned} & \text { 21,012 (stage 15-20)- 44,904 (stage 24-25) } \\ & 21,806 \text { (stage 3-5) - 49,346 (stage 12-15) } \\ & 26,313 \text { (stage 1-10) - } 81,250 \text { (stage 35-50) } \end{aligned}$ |
| $\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$ | Electric Pumpsets with accessories and installation charges $2 \mathrm{HP}$ <br> 3 HP <br> 5 HP <br> 7.5 HP |  |
| $\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$ | Diesel Pumpsets with accessories \& installation charges $\begin{aligned} & 5 \mathrm{HP} \\ & 6.5 \mathrm{HP} \\ & 7.5 \mathrm{HP} \\ & 8 \mathrm{HP} \end{aligned}$ |  |
| 1 | Petrol start Kerosene run Pumpsets with accessories \& installation charges $2 \mathrm{HP}$ $3.5 \mathrm{HP}$ <br> B. PUMPHOUSE <br> Pumphouse ( $2.5 \times 2.5 \times 2.1 \mathrm{~m}$ ) |  |

Repayment period -9 years including 11 months gestation period;
Instalment frequency - yearly
Note : Based on the field conditions, the make and model of the pumpsets may be decided and banks may finance as per the prevailing market rates.
B) Drip Irrigation

| SI.No. | Crop | Specifications | Unit Cost <br> per Ha (₹) |
| :---: | :--- | :---: | :---: |
| 1 | Mango / Chiku / Tamarind | $8 \mathrm{~m} \&$ Above | 32,230 |
| 2 | Coconut | 4 m to $<8 \mathrm{~m}$ | 46,518 |
| 3 | Guava, Lemon, Orange, Mosambi, Cashew | 4 m to $<8 \mathrm{~m}$ | 46,518 |
| 4 | Papaya, Arecanut, Drumstick, |  |  |
|  | Custard Apple, Pomegranate, Drumstick | 2 m to 4 m | 90,914 |
| 5 | Grape | 2 m to 4 m | 90,914 |
| 6 | Banana | 2 m to 4 m | 90,914 |
| 7 | Sugarcane | 1.2 m to $<2.0 \mathrm{~m}$ | $1,35,855$ |
| 8 | Cotton, Ginger, Vegetable, Rose | $<1.2 \mathrm{~m}$ | $1,35,855$ |

Repayment period - 10 to 15 years including 11 months gestation period; Instalment frequency - yearly
C) Spinkler Irrigation System

| SI.No. | Item | Unit Size | Unit Cost (₹) |
| :---: | :---: | :---: | :---: |
| 1 | HDPE Pipes 63 mm | 1 ha | 35,090 |
| 2 | HDPE Pipes 75 mm | 1 ha | 42,350 |

Repayment period : 10-15 years with 1 year grace
D) Other Investments

| SI. <br> No. | Item | Unit Size / <br> Specification | Unit Cost <br> (₹) |
| :---: | :---: | :---: | :---: |
| 1 | Underground Pipeline for <br> distribution system <br> PVC $4 \mathrm{~kg} / \mathrm{cm}^{2}$ (square) | 75 mm <br> 90 mm <br> 100 mm | $198 /$ metre <br> $253 /$ metre <br> $264 /$ metre |



## E) Solar Pumping System

| SI. No. | Category / Model | Total cost per system (₹) |  |  |
| :---: | :---: | :---: | :---: | :---: |
| A | Submersible Pumps with Normal Controller (water filled motor) |  |  |  |
| 1. | 5 HP AC (4800 Wp) | 2,65,885 | 55 |  |
| 2. | 5 HP DC (4800 Wp) | 2,73,548 | 57 |  |
| 3. | $7.5 \mathrm{HP} \mathrm{AC} \mathrm{( } 6750 \mathrm{Wp}$ ) | 3,46,060 | 51 | + |
| 4. | 7.5 HP DC ( 6750 Wp ) | 3,81,736 | 57 | , |
| 5. | $10 \mathrm{HP} \mathrm{AC} \mathrm{(9000} \mathrm{Wp)}$ | 4,56,218 | 51 |  |
| 6. | $10 \mathrm{HP} \mathrm{DC} \mathrm{(9000} \mathrm{Wp)}$ | 4,58,261 | 51 |  |
| B | Submersible Pumps with Normal Controller |  |  |  |
| 1. | $3 \mathrm{HP} \mathrm{AC} \mathrm{(2700} \mathrm{Wp)}$ | 1,82,080 | 67 |  |
| 2. | $3 \mathrm{HP} \mathrm{DC} \mathrm{(2700} \mathrm{Wp)}$ | 1,87,501 | 69 |  |
| 3. | $5 \mathrm{HP} \mathrm{AC} \mathrm{(4800} \mathrm{Wp)}$ | 2,58,386 | 54 |  |
| 4. | 5 HP DC (480o Wp) | 2,61,062 | 54 | - |
| 5. | 7.5 HP AC ( 6750 Wp ) | 3,76,218 | 56 | ) |
| 6. | 7.5 HP DC ( 6750 Wp ) | 3,86,838 | 57 |  |
| 7. | $10 \mathrm{HP} \mathrm{AC} \mathrm{(9000} \mathrm{Wp)}$ | 4,53,201 | 50 |  |
| 8. | $10 \mathrm{HP} \mathrm{DC} \mathrm{(9000} \mathrm{Wp)}$ | 4,53,167 | 50 |  |

Unit cost per Wp is inclusive of supply, installation, transportation, taxes, 5 years comprehensive maintenance and insurance.

Repayment including gestation period
Instalment frequency
: 11-15 years
: Yearly

## SPECIAL TERMS AND CONDITIONS - MINOR IRRIGATION SCHEMES

## A. DW / BW / PP / TW / DOW / PUMPSET, etc

1. Ground Water Development : Bank shall ensure that the ground water development programmes are implemented in "Safe" and "Semi Critical" Firkas, and technical clearance from the State Government Department is obtained before extending the credit facility.
2. Spacing : The minimum spacing to be maintained between dugwells, other minor irrigation structures shall be as indicated below:
(a) Between two Dugwells with or without pumpset : 150 m
(b) Between two ShallowTubewells / Filter Points with pumpsets : 175 m
(c)Between a Dugwell with pumpset and ShallowTubewell / Filter Point : 162.5 m

The spacing criteria is also applicable to single purpose investments such as energisation of wells with oil engine or electric motor as also to deepening of existing wells.

## 3. Renovation / Deepening of wells

a) Only those wells having insufficient water column in summer and need deepening to ensure adequate yield for meeting the water requirement of crop command should be covered under the programme.
b) An officer of the implementing bank shall check atleast $20 \%$ of the programme financed for development of wells and submit a report to bank giving quantitative values of depth, rates and cost of deepening / desilting / lining works carried out.
c) The spacing norms (as per 2 above) between wells may be adhered to under ROW/DOW.
4. Electric Supply : Before approving loan for electric
 pumpsets, the bank shall satisfy itself that the village is electrified and that timely power supply would be available to the beneficiary for operation of the pumpset.

## 5. Minimum acreage and sale of water

It is necessary that the beneficiary has the following minimum area of land to be brought under irrigation to ensure viability of investments and repayment of loans in the prescribed period.
6. Type of Structure
a) Dugwell with pumpset
b) Borewell with SIP
c) Shallowtube wells
d) Filter point well
[Benefitting Area (ha)]
1.0
1.6
2.0
0.4

If the beneficiary's own irrigated area is less than the area which can be irrigated by well/ borewell, the beneficiary can sell surplus water to the neighbouring farms. The income from sale of water, if guaranteed, may also be reckoned for the purpose of viability of investments upto a maximum of $50 \%$ of loan repayment instalment.

## 7. Selection and Installation of Pumpsets

a) The bank shall ensure that the pumpsets financed under the scheme are selected and installed as per BIS 10804-1994 and a certificate to that effect shall be furnished to NABARD while availing refinance.
b) In case of second hand pumpsets financed under the scheme, if any, the bank shall obtain a certificate from its technical officer that the useful balance serviceable life of the second hand pumpset is adequate to cover the repayment period of the loan for pumpset.
c) Wherever loan is advanced for replacement of existing pumpset by new pumpset, or for replacement of diesel pumpset by electric pumpset in critical and over exploited blocks the bank shall ensure that there is no change in the HP of the pumpset and that the new pumpset installed also confirms to BIS 10804-1994).
d) Bank shall ensure that the spacing criteria as stipulated in para 2 above are adhered to while financing for pumpsets
 as well.
e) Wherever loans are advanced for standby pumpset bank shall ensure that the standby unit is also selected as per the BIS 10804-1994 and the loans, both for existing pumpset and the standby unit are recovered together within the normal recommended repayment period.
f) Wherever higher HP pumpset is required for use other than irrigation with common prime mover, total HP of pumpset selected shall not exceed 105 times the HP required for irrigation purpose, subject to a maximum of 10 HP .
g) Capacitors: The electric motor to be financed with a starter and a capacitor matching the motor.

The following KVAR rating for Capacitors are recommended for use:
Below 3HP - 1 KVAR
3 HP to 5 HP - 2 KVAR
5 HP to 7.5 HP - 3 KVAE

8. AfterSales Service

Bank shall ensure that adequate after sales services and repair facilities are provided by the manufacturers / dealers installing the pumpset on beneficiaries well and that such service is provided free of charge during the first year of installation.
9. Before advancing loans for underground pipelines system, bank shall verify the invoice order in regard to the quantity of pipes required by the farmer and shall also ensure that entire length of pipelines for which loans advanced, are actually laid down.
10. (i) Wherever subsidy is available under any programme of the State / Central Government or any other subsidy scheme, the bank shall avail refinance net of subsidy.

(ii) Wherever Compensation is available under the "Failed Well Compensation Scheme", the bank shall recover the cost of construction of well from the compensation receivable by the farmer and transfer the same against refinance availed, if any.
11. While claiming refinance from NABARD, the bank may furnish block-wise details of different units financed.

## 12. Water Lifting Permission

Where financing pumpset for lifting water from rivers / canals is envisaged, a letter from competent authority in the concerned Department of the State Government authorizing the beneficiary to lift water from river / canal and indicating the period upto which such a permission is given, should be obtained and submitted to the bank before processing loan proposal. The bank may also ensure that permission for lifting water is available for a period which will cover atleast 3 years longer than the repayment period ofloans.


## B. SPRINKLER IRRIGATION SYSTEM

1. The bank should ensure that adequate water of suitable quality to cover the envisaged area is available at the nearest location.
2. Design of the system for a given cropping pattern should be done by a technically competent person / agency taking into consideration the source and availability of water, wind velocity in different seasons, soil conditions, agro climatic situations etc. to ensure installation of most economical and efficient system at the farm level.
3. A plan of the area showing field layout and cost estimate of the system should be prepared by the implementing agency and appraised by the financing bank.
4. The components of the system including pipes should
 conform to BIS Specifications. Any change in technical design or cost during implementation of the scheme should have adequate justifications and prior approval of the financing bank and NABARD.
5. The implementing agency / manufacturers should offer performance guarantee of the system for a reasonably longer period against any defect either manufacturing/ working or installation. The firm should extend regular after sales / service for maintenance.
6. The sprinkler, pipes, accessories, motor, etc., should be safeguarded against theft, fire, burglary, etc.
7. The bank should conduct periodic monitoring to assess the working performance of the system and take corrective steps wherever required.

## C. DRIP-IRRIGATION SYSTEM

1. The bank should ensure that only a technically competent and approved person or firm designs and installs the system at the field level.
2. Availability of adequate water of suitable quality (chemical and physical) on a long term basis should be ensured for smooth operation of the system. The system design and cost estimates may by done taking into consideration the optimum water requirement of each plant, benefiting area, cropping pattern, plant spacing, soil characteristics, pan evaporation, design discharge, operation pressure of the emitters etc.
3. The installing agency should prepare a plan and field layout of the system and suggest efficient design of the system along with the cost of each item.
4. The installing agency should furnish performance guarantee for the efficient operation for the system as also ensure timely and adequate after sales service for trouble free working of the system.
5. Bank should carry out periodic monitoring of the implementation and assess the performance of the system at the field level.
6. The pipes (main and lateral), drippers / emitters, other accessories should be safeguarded against theft, robbery, fire,
 etc.
7. The system components should conform to BIS specification.

## 2. LAND DEVELOPMENT

| Sl. <br> No. | Item of Investment | Specifications | Quantity | Approved Cost using Labour (₹) | Approved Cost using Machinery (₹) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Graded bunding | 0.75 SqM cross section, 210 m length per ha | 158 CuM | 15,763 | 8,270 |
| 2 | Farm bunding upto $4 \%$ field slope light soil upto $4 \%$ field slope medium soil upto $4 \%$ field slope heavy soil | $0.75 \mathrm{SqMc} / \mathrm{s} 200 \mathrm{~m} / \mathrm{ha}$ <br> $0.75 \mathrm{SqM} \mathrm{c} / \mathrm{s} 200 \mathrm{~m} / \mathrm{ha}$ <br> $0.75 \mathrm{SqMc} / \mathrm{s} 200 \mathrm{~m} / \mathrm{ha}$ | 150 CuM <br> 150 CuM <br> 150 CuM | $\begin{aligned} & 15,015 \\ & 15,763 \\ & 16,555 \end{aligned}$ | $\begin{aligned} & 7,850 \\ & 7,850 \\ & 7,850 \end{aligned}$ |
| 3 | Field drainage for wet lands | 2.52 SqM c/s $65 \mathrm{~m} / \mathrm{ha}$ | 164 CuM | 32,527 | 6,200 |
| 4 | Farm Pond with berm of 2 m <br> Farm Pond in Soft Murrum <br> Farm Pond in Plain Areas <br> Farm Pond in Hilly Areas | $\begin{aligned} & 30 \times 30 \times 2 \mathrm{~m} \\ & 30 \times 30 \times 2 \mathrm{~m} \\ & 5 \mathrm{mx} 5 \mathrm{~m} \times 1.5 \mathrm{~m} \\ & 5 \mathrm{~m} \times 5 \mathrm{~m} \times 1.5 \mathrm{~m} \end{aligned}$ |  | $\begin{array}{r} 1,80,180 \\ 2,16,216 \\ 36,000 \\ 54,000 \end{array}$ | $\begin{array}{r} 1,45,000 \\ 1,32,132 \\ 20,000 \\ 28,000 \end{array}$ |
| 5 | Land leveling \& Shaping/ha | (a) Slope : upto :1\% <br> (b) Slope : 1-2\% <br> (c) Slope : 2-3\% | 10 Bulldozer hours 20 Bulldozer hours 30 Bulldozer hours | $\begin{array}{r} 9,240 \\ 18,480 \\ 31,350 \end{array}$ | $\begin{aligned} & 12,300 \\ & 24,600 \\ & 36,900 \end{aligned}$ |
| 6 | Fencing (running mts)* | Barbed per running metre |  | 1,176 |  |

* Barbed wire fencing ( 6 straight and 2 diagonal line) using stone pillar Repayment period - 9 years including 24 months ; Instalment frequency - yearly



## 3A. FARM MECHANIZATION

| SI.No. | Activity | Final Unit Cost $(₹)$ |
| :---: | :--- | :---: |
|  | Farm Mechanisation |  |
| 1 | Multi crop thresher (High capacity) | $3,80,000-6,11,100$ |
| 2 | Power weeder with attachment (Self propelled) | $28,000-1,98,000$ |
| 3 | Power Thresher | $2,66,543$ |
| 4 | Paddy transplanter (4 row-walk behind) | $2,52,300-3,12,843$ |
| 5 | Power tiller more than 8 HP and above with attachments | $1,59,000-2,33,000$ |
| 6 | Rotovator | $78,000-1,85,574$ |
| 7 | Laser leveler | $4,31,200$ |
| 8 | Zero till seed drill | 86,670 |

## Other Machineries

| SI.No. | Activity | Final Unit Cost (₹) |
| :---: | :--- | :---: |
| 9 | Seed cum fertiliser drill | $45,864-87,181$ |
| 10 | Cultivator (Seven tyre) right type \& spring type | $22,000-35,200$ |
| 11 | Cultivator (Five tyre) right type \& spring type | $30,000-48,300$ |
| 12 | Cultivator (Nine tyre) right type \& spring type | $37,800-51,000$ |

Repayment period - 5 to 7 years including 03 months gestation period; Instalment frequency - Quarterly / Half yearly

## B. MACHINERIES \& TRACTORS

| SI.No. | Activity | Final Unit Cost (₹ in lakh) |
| :---: | :--- | :---: |
| 1 | Small tractor (18-25 HP) | $4.65-6.37$ |
| 2 | Tractor - 25-30 HP | $6.33-7.54$ |
| 3 | Tractor - 30-45 HP | $6.54-10.96$ |
| 4 | Tractor - more than 45 HP | $7.77-13.55$ |



| SI.No. | Activity | Final Unit Cost (₹ in lakh) |
| :---: | :---: | :---: |
| 5 | Tractor drawn land leveler | 0.22-0.28 |
| 6 | M.B.plough | 1.20-2.88 |
| 7 | Disc plough | 0.79-1.73 |
| 8 | Disc harrow | 0.88-0.99 |
| 9 | Paddy harrow / Puddler | 1.91 |
| 10 | Seed-cum-fertiliser drill with planter attachment | 1.01 |
| 11 | Power tiller operated sweep tyne cultivator | 0.17 |
| 12 | Self Propelled (Mat type) rice transplanter | 2.52-3.12 |
| 13 | 6 row transplanter (19-21 HP) - ridger type | 13.59-16.12 |
| 14 | 8 row transplanter ( $21 \mathrm{HP)} \mathrm{-} \mathrm{ridger} \mathrm{type}$ | 20.96 |
| 15 | Conoweeder | 0.026 |
| 16 | Self-propelled riding type vertical conveyor reaper | 1.44-1.65 |
| 17 | Axial-flow paddy thresher | 2.98 |
| 18 | Groundnut digger shaker / harvester | 1.82 |
| 19 | Groundnut thresher | 3.41 |
| 20 | Maize De-husker-cum-sheller | 3.30 |
| 21 | Turmeric harvester / Digger | 0.11 |
| 22 | Tapioca harvester | 0.22-0.28 |
| 23 | Power operated sugarcane sett cutting machine | 0.33 |
| 24 | Sugarcane cutter planter | 1.10 |
| 25 | Sugarcane harvester | 88.13-96.00 |
| 26 | Power tiller operated orchard sprayer | 0.11-0.39 |
| 27 | Tractor operated sprayer | 1.75-5.50 |



| SI.No. |
| :---: |
| 28 |


| Activity |
| :--- |
| Solar Dryer for Vegetables and Fruits <br> (including the cost of Poly Carbonate sheets, <br> Kadappa stone flooring,equipment for temperature <br> and humidity control and erection charges, etc.) |


1
2
3
4

Note : - Unit costs have been recommended in range, as there are many suppliers and manufacturers for Agriculture machineries. However, banks may finance all items as per the quotation for the specific make \& model. Rates prescribed are indicative.The approved rates are inclusive of design, supply, installation.

# 4. PLANTATION \& HORTICULTURE 

 4.1 ARECANUTIndicative Unit Cost for Cultivation of Arecanut
$\begin{array}{llll}\text { Cost : Arecanut } & \text { Variety } & : \text { Mangala, Sumangala, Subamangala } \\ \text { Spacing : } & 2.75 \mathrm{mx2} 2.75 \mathrm{~m} & \text { Area } & : \text { 1 Hectare }\end{array}$
(Amount in ₹)

| SI.No. | Particulars | Years |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 1 | 2 | 3 | 4 | 5 | 6 |
| A | Material Cost |  |  |  |  |  |  |
| 1 | Planting material (incl. 10\% extra) | 29,040 | - | - | - | - | - |
| 2 | Farm yard manure | 4,950 | 4,950 | 4,950 | 4,950 | 9,900 | 9,900 |
| 3 | Fertilisers | 7,720 | 7,720 | 7,720 | 7,720 | 15,438 | 15,438 |
| 4 | Irrigation | 2,000 | 2,000 | 2,000 | 2,000 | 2,000 | 2,000 |
| 5 | Shade material | 2,640 | - | - | - | - | - |
| 6 | Plant protection chemicals | 2,000 | 2,000 | 3,000 | 3,000 | 3,000 | 3,000 |
|  | Sub Total | 48,350 | 16,670 | 17,670 | 17,670 | 30,338 | 30,338 |
| B | Operation and labour | 55,500 | 24,600 | 18,300 | 18,300 | 21,900 | 27,900 |
| C | Miscellaneous | 107 | 167 | 167 | 167 | 135 | 135 |
|  | Total | 1,04,000 | 41,400 | 36,100 | 36,100 | 52,400 | 58,400 |

Unit cost capitalised upto fifth year Repayment period: 11 years

Indicative unit cost ₹ $2,70,000$
Inclusive of grace period : 6 Years

## Indicative Unit Cost for Cultivation of Aonla

$\begin{array}{llll}\text { Cost } & : & \text { Aonla } & \text { Variety } \\ \text { Spacing } & \text { : } & \text { Banarasi, NA }-7, \text { Chakia, BSR }-1\end{array}$
Spacing : $5 \times 5 \mathrm{~m}$ Area : 1 Hectare
(Amount in ₹)
SI.No. Particulars

|  |  |  |  |  |  |  |  | (Amount in ₹) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1}$ | 2 | 3 | 4 | 5 | 6 |  |  |  |  |  |

A Material Cost
1 Planting material (incl. 10\% extra) 15,400
2 Farm yard manure 2,000

3 Fertilisers
4 PGR
5 Plant protection chemicals
2,000

6 Fencing (live hedge)
7 Irrigation
2,104
3,000 4,000 5,000
6,000
6,000
-
1,000
1,000
8 Staking material

|  | Sulb Total | 23,30 |
| :---: | :--- | ---: |
| B | Operation and labour | 24, |
| C | Intercrop |  |
| D | Miscellaneous | 3 |
|  | Total | 51,16 |
| Unit cost capitalised upto fourth year <br> Repayment period : 8 Years |  |  |

### 4.3 CASHEWNUT

Indicative Unit Cost for Cultivation of Cashewnut

| Cost $: ~ C a s h e w ~$ | Variety | $:$ VRI-1, VRI-2, VRI-3, VRI-4 |
| :--- | :--- | :--- | :--- |
| Spacing : $7 \times 7 \mathrm{~m}$ | Area | $: 1$ Hectare |

(Amount in ₹)



### 4.5 COCUNUT PLANTATION - T \& D VARIETY

 Indicative Unit Cost for Cultivation of Coconut - T \& D HybridsCost : Coconut Variety : T \& D Hybrids
Spacing : 7.5 mx 7.5 m Area : 1 Hectare
(Amount in ₹)

| SI.No | Particulars | Years |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 1 | 2 | 3 | 4 | 5 | 6 |
| A | Material Cost |  |  |  |  |  |  |
| 1 | Planting material (incl. 10\% extra) | 7,700 | - | - | - | - | - |
| 2 | Farm yard manure | 875 | 1,313 | 1,750 | 2,188 | 2,625 | 3,500 |
| 3 | Fertilisers | 2,631 | 5,263 | 7,894 | 10,525 | 13,157 | 15,788 |
| 4 | Irrigation | 1,000 | 1,000 | 1,000 | 1,000 | 1,000 | 1,000 |
| 5 | Plant protection chemicals | 500 | 500 | 750 | 750 | 750 | 800 |
| 6 | Tying of bunches with rope(upto 10th yr) | 5 | 5 | - | - | 875 | 1,100 |
| 7 | Fencing(live fencing) | 2,000 | - | - | - |  | - |
|  | Sub Total | 14,706 | 8,075 | 11,394 | 14,463 | 18,407 | 22,188 |
| B | Operation and labour | 45,600 | 14,700 | 16,800 | 18,900 | 22,500 | 24,000 |
| C | Intercrop | 3,000 | - | - | - | - | - |
| D | Miscellaneous | 165 | 167 | 119 | 121 | 148 | 138 |
|  | Total | 63,500 | 22,900 | 28,300 | 33,500 | 41,100 | 46,300 |

Unit cost capitalised upto fifth year ₹ $1,89,300$
Maintanance cost from 6th year ₹ 46,300

Inclusive of grace period : 5 years
Repayment period : 10 years

### 4.6 COFFEE

## Indicative Unit Cost for Cultivation of Coffee

| SI.No. | Particulars | Years |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 1 | 2 | 3 | 4 | 5 |
| A | Material Cost |  |  |  |  |  |
| 1 | Planting material (incl. 10\% extra) | 24,200 | 860 | - | - | - |
| 2 | Shade plants | 2,590 | 2,200 | 2,200 | 2,200 | 2,200 |
| 3 | Fertilisers | 5,908 | 11,816 | 11,816 | 11,816 | 11,816 |
| 4 | Plant protection chemicals | 1,000 | 1,000 | 1,500 | 2,000 | 2,000 |
| 5 | Staking material | 4,400 | - | - | - | - |
|  | Sub Total | 38,098 | 15,876 | 15,516 | 16,016 | 16,016 |
| B | Operation and labour | 62,500 | 34,000 | 31,250 | 33,750 | 36,250 |
| C | Intercrop | - | - | - | - | - |
| D | Miscellaneous | 84 | 108 | 68 | 68 | 68 |
|  | Total | 1,00,700 | 50,000 | 46,800 | 49,800 | 52,300 |

Unit cost capitalised upto fourth year
Repayment period : 10 years

Indicative unit cost ₹ $2,47,300$
Inclusive of grace period : 5 years

### 4.7 CURRY LEAF

Indicative Unit Cost for Cultivation of Curry Leaf
Cost : Curry leaf Variety : Local (Senkaambu, Patchaikaambu) Spacing : 1.8 mx 1.8 m Unit Size : Acre
(Amount in ₹)

| SI.No. | Particulars | Years |  |
| :---: | :---: | :---: | :---: |
|  |  | 1 | 2 |
| $\begin{gathered} \mathbf{A} \\ 1 \\ 2 \\ 3 \end{gathered}$ <br> 4 5 | Material Cost <br> Planting material@₹ $10.00 /$ seedling (incl. 10\% for gap filling) <br> FYM @ 10kg/plant @ ₹ 1000/t <br> Fertilisers : NPK complex fertilizers(17:17:17) @5ogm per plant \& applied after every harvest (4 harvests per year at quarterly intervals-cost of fertilizer ₹ $29 / \mathrm{kg}$ ) <br> Cost of irrigation - lumpsum <br> Plant protection cost | $\begin{array}{r} 13,200 \\ 12,000 \\ 6,960 \\ \\ 6,000 \\ 2,000 \end{array}$ | $\begin{array}{r} 0 \\ 12,000 \\ 6,960 \\ \\ 6,000 \\ 2,000 \end{array}$ |
|  | Sub Total | 40,160 | 26,960 |
| C | Operation (Labour Mandays) <br> Land preparation including formation of irrigation channels <br> Digging of pits <br> Filling of pits and planting <br> Application of manures and fertilizers <br> Application of PP chemicals <br> Irrigation <br> Weeding (8 weedings @ 8 male labourers / weeding) <br> Harvesting <br> Total labour mandays <br> Cost of labour (₹ / manday) <br> Total labour cost <br> Miscellaneous | $\begin{array}{r} 10 \\ 10 \\ 15 \\ 8 \\ 6 \\ 18 \\ 64 \\ 10 \\ 141 \\ \mathbf{3 5 0} \\ \mathbf{4 9 , 3 5 0} \\ 240 \end{array}$ |  |
|  | Grand total (1+2+3) | 89,800 | 78,000 |
| Unit cost capitalised upto one year Indicative unit cost ₹ 89,800 <br> Repayment period : 4 years Inclusive of grace period : 2 years |  |  |  |

### 4.8 JASMINE <br> Indicative Unit Cost for Cultivation of Jasmine

Cost : Jasmine Variety : J.sambac, J.auriculatum, J.grandifloram Spacing : 1.5 mx 1.5 m Area : 1 Hectare
(Amount in ₹)


| $\begin{aligned} & \text { SI. } \\ & \text { No. } \end{aligned}$ | Particulars | Years |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 1 | 2 | 3 | 4 |
| A | Material Cost |  |  |  |  |
| 1 | Planting material (incl. 10\% extra) | 50,800 | 5,080 | - |  |
| 2 | Farm yard manure | 15,900 | 15,900 | 15,900 | 15,900 |
| 3 | Fertilisers | 13,153 | 13,153 | 13,153 | 13,153 |
| 4 | Irrigation | 5,000 | 5,000 | 5,000 | 5,000 |
| 5 | Plant protection chemicals | 4,000 | 4,000 | 4,000 | 4,000 |
| 6 | Fencing (live hedge) | 2,000 |  |  |  |
|  | Sub Total | 90,853 | 43,133 | 38,053 | 38,053 |
| B | Operation and labour (excl.labour on harvesting) | 83,000 | 96,250 | 98,500 | 98,000 |
| C | Harvesting charges @ ₹ $5 / \mathrm{kg}$ of flowe | 13,500 | 45,000 | 45,000 | 45,000 |
| D | Miscellaneous | 500 | 300 | 200 | 200 |
|  | Total | 1,87,853 | 1,84,683 | 1,81,753 | 1,81,253 |
|  | Unit cost capitalised upto one year Repayment period : 6 years | Indicativ Inclusive | e unit cost of grace pe | $1,87,900$ $\text { iod: } 1 \text { year }$ |  |



### 4.10 SEEDLESS GRAPE

Indicative Unit Cost for Cultivation of Seedless Grape
Cost : Grape Variety : Seedless
Spacing : 4×3m Area: 1 Acre
(Amount in ₹)


NABARD


### 4.12 GUAVA ( $5 \times 2.5 \mathrm{~m}$ )

## Indicative Unit Cost for Cultivation of Guava

Cost : Guava Variety : Allahabad safeda, Lalith, others
Spacing : $5 \times 2.5 \mathrm{~m}$
Area : 1 Acre
(Amount in ₹)

| SI. <br> No. | Particulars | Years |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 1 | 2 | 3 | 4 | 5 | 6 |
| A | Labour |  |  |  |  |  |  |
| 1 | Land clearing \& development | 3,000 | o | 0 | o | o |  |
| 2 | Layout and digging of pits | 18,000 | 600 | o | o | o |  |
| 3 | Filling of pits | 7,500 | 600 | o | o | o |  |
| 4 | Planting \& plant support (staking) | 1,500 | 600 | 0 | о | o | o |
| 5 | FYM \& fertilizers application | 1,500 | 1,500 | 1,800 | 2,400 | 2,400 | 2,400 |
| 6 | Plant protection | 600 | 600 | 900 | 900 | 1,500 | 1,500 |
| 7 | Irrigation | 600 | 600 | 600 |  | 1,500 | 600 |
| 8 | Weeding, Earthing up \& other intercultural operations | 3,000 | 3,000 | 3,000 | 3,000 | 3,600 | 3,600 |
| 9 | Pruning and training | 900 | 900 | 900 | 1,800 | 1,800 | 1,800 |
| 10 | Harvesting, carriage \& packaging cost | - | O | 600 | 1,200 | 3,000 | 3,000 |
|  | Sub Total-A | 36,600 | 8,400 | 7,800 | 9,300 | 12,300 | 12,900 |
| B | Material |  |  |  |  |  |  |
| 1 | Planting material (including transportation)-seedling/rootstock | 11,200 | 1,120 | o | o | o | 0 |
| 2 | Farm yard manure | 1,600 | 1,600 | 1,600 | 1,600 | 1,600 | 1,600 |
| 3 | Vermicomposting | o | o | o | o | o | o |
| 4 | Other concentrated manures (Bonemeal,fish,meal etc.) | - | - | - | - | - |  |
| 5 | N | 438 | 876 | 1,314 | 1,752 | 2,190 | 2,190 |
| 6 | P | 2,726 | 1,357 | 2,035 | 2,035 | 2,714 | 3,392 |
| 7 | K | 832 | 1,664 | 2,496 | 3,328 | 4,160 | 4,160 |
| 8 | Irrigation <br> (diesel/electricity/lumpsum requirements) | 800 | 1,000 | 1,200 | 1,500 | 1,500 | 1,500 |
| 9 | Plant protection | 320 | 300 | 400 | 400 | 600 | 600 |
| 10 | Fencing | 1,000 | o | o | o | o | o |
| 11 | Others if any (specify) | 23,000 | 0 | o | o | o | o |
|  | Sub Total-B | 41,916 | 7,917 | 9,045 | 10,616 | 12,764 | 13,442 |
|  | Total A+B | 78,516 | 16,317 | 16,845 | 19,916 | 25,064 | 26,342 |
| C | Total cost | 78,516 | 16,317 | 16,845 | 19,916 | 25,064 | 26,342 |
| D | Number of years capitalisation (Years) | 3 |  |  |  |  |  |
| E | Cost reckoned for unit cost | 1,11,679 |  |  |  |  |  |
| F | Capitalised intercropping cost | o |  |  |  |  |  |
| G | Unit cost | 1,11,700 |  |  |  |  |  |

Repayment period : 8 years
Inclusive of grace period : 3 years

### 4.13 SAPOTA

Indicative Unit Cost for Cultivation of Sapota
Cost : Sapota Variety : Cricket Ball, Oval, Co-1, Co-2, PKM 1,2,3
Spacing : $8 \times 8 \mathrm{~m}$ Area : 1 Hectare
(Amount in ₹)

| SI. |  |  |  | Yea |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No. | Particulars | 1 | 2 | 3 | 4 | 5 | 6 |
| A | Material Cost |  |  |  |  |  |  |
| 1 | Planting material (incl. 10\% extra) | 5,160 | - | - | - | - |  |
| 2 | Farm yard manure | 780 | 1,560 | 2,340 | 3,120 | 3,900 | 3,900 |
| 3 | Fertilisers | 4,599 | 9,198 | 13,797 | 18,396 | 22,995 | 22,995 |
| 4 | Irrigation | 2,000 | 2,000 | 2,000 | 2,000 | 2,000 | 2,000 |
| 5 | Plant protection chemicals | 1,000 | 1,000 | 1,500 | 1,500 | 2,000 | 2,000 |
| 6 | Fencing (live hedge) | 800 | - | - | - | - | - |
|  | Sub Total | 14,339 | 13,758 | 19,637 | 25,016 | 30,895 | 30,895 |
| B | Operation and labour | 32,100 | 9,300 | 11,100 | 11,400 | 15,300 | 16,800 |
| C | Intercrop | 2,000 | - | - | - | - |  |
| D | Miscellaneous | 111 | 142 | 113 | 184 | 155 | 155 |
|  | Total | 48,500 | 23,200 | 30,800 | 36,600 | 46,300 | 47,800 |
| Unit cost capitalised upto fifth year Repayment period: 10 years |  |  | Indicative unit cost ₹ $1,85,400$ <br> Inclusive of grace period : 5 years |  |  |  |  |

4.14 LIME

Indicative Unit Cost for Cultivation of Lime
Cost : Lime Variety : PKM-1
Spacing : $5 \times 5 \mathrm{~m}$ Area : 1 Hectare

(Amount in ₹)

|  | Particulars | Years |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No. |  | 1 | 2 | 3 | 4 | 5 | 6 |
| A | Material Cost |  |  |  |  |  |  |
| 1 | Planting material (incl. 10\% extra) | 8,800 | - | - | - | - | - |
| 2 | Farm yard manure | 2,000 | 2,000 | 3,000 | 4,000 | 5,000 | 6,000 |
| 3 | Fertilisers | 3,922 | 4,602 | 6,139 | 7,676 | 9,213 | 10,242 |
| 4 | Micronutrients | 0 | 500 | 500 | 750 | 750 | 1,000 |
| 5 | Plant protection chemicals | 1,000 | 1,500 | 2,000 | 2,000 | 2,500 | 2,500 |
| 6 | Irrigation | 1,500 | 1,500 | 2,000 | 2,000 | 2,500 | 2,500 |
|  | Sub Total | 17,222 | 10,102 | 13,639 | 16,426 | 19,963 | 22,242 |
| B | Operation and labour | 36,900 | 12,300 | 14,100 | 14,700 | 20,100 | 21,600 |
| C | Intercrop | 3,000 | - | - | - | - |  |
| D | Miscellaneous | 103 | 155 | 171 | 137 | 153 | 174 |
|  | Total | 57,225 | 22,557 | 27,910 | 31,263 | 40,216 | 44,016 |
|  | Unit cost capitalised upto fifth Repayment period : 8 years |  |  | cative unit usive of $g$ | cost ₹ 1 , ace perio | 9,200 <br> : 4 years |  |

(Amount in ₹)

Cost : Mango Variety : Banganapalli, Alphonso, Imam pasand
Spacing : 7x7metre Area: 1 Hectare

### 4.15 MANGO

Indicative Unit Cost for Cultivation of Mango

| I. | Particulars | Years |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No. |  | 1 | 2 | 3 | 4 | 5 | 6 |
| A | Material Cost |  |  |  |  |  |  |
| 1 | Planting material (incl. 10\% extra) | 8,800 | - | - | - | - | - |
| 2 | Farm yard manure | 1,000 | 2,000 | 3,000 | 4,000 | 5,000 | 5,000 |
| 3 | Fertilisers | 5,896 | 11,792 | 17,688 | 23,584 | 29,480 | 29,480 |
| 4 | Plant growth regulator | 0 | 0 | 0 | 0 | 200 | 400 |
| 5 | Plant protection chemicals | 500 | 1,000 | 1,500 | 1,500 | 2,000 | 200 |
| 6 | Irrigation | 2,000 | 2,000 | 2,000 | 2,000 | 2,000 | 2,000 |
| 7 | Staking material | 400 | - | - | - | - | - |
|  | Sub Total | 18,596 | 16,792 | 24,188 | 31,084 | 38,680 | 37,080 |
| B | Operation and labour | 31,800 | 9,000 | 10,200 | 10,500 | 10,800 | 18,000 |
| C | Intercrop | 3,000 | - | - | - | - | - |
| D | Miscellaneous | 132 | 114 | 96 | 128 | 110 | 110 |
|  | Total | 53,528 | 25,906 | 34,484 | 41,712 | 49,590 | 55,190 |
| Unit cost capitalised upto fifth year Repayment period: 10 years |  | Indicative unit cost ₹ $2,05,200$ <br> Inclusive of grace period : 5 years |  |  |  |  |  |


4.16 POMEGRANATE

Indicative Unit Cost for Cultivation of Pomegranate

| Cost : Pomegranate | Variety | $:$ Bhagwa |
| :--- | :--- | :--- |
| Spacing : $3 \times 3 \mathrm{~m}$ | Area | $: 1$ Acre |

Years
SI.No.
Particulars

| 1 | 2 | 3 |
| :--- | :--- | :--- |

4
(Amount in ₹) $\begin{array}{ll}\text { Cost }: ~ P o m e g r ~ \\ \text { Spacing : } & 3 \times 3 \mathrm{~m}\end{array}$

Area : 1 Acre
5

A Material Cost
1 Planting material (incl. 10\% extra) 14,535
2 Farm yard manure
3 Fertilisers
4 Plant protection chemicals

| 1,650 | 3,300 | 4,950 | 6,600 | 8,250 |
| ---: | ---: | ---: | ---: | ---: |
| 10,306 | 10,306 | 11,588 | 11,588 | 11,588 |
| 5,000 | 10,000 | 15,000 | 20,000 | 20,000 |
| 0 | 0 | - | - | - |
| 1,500 | 1,500 | 2,000 | 2,000 | 2,000 |
| 880 | - | - | - | - |


| 6 | Irrigation | 1,500 | 1,500 | 2,000 | 2,000 | 2,000 |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: |
| 7 | Staking material | 880 | - | - | - | - |


|  | Sub Total | $\mathbf{3 3 , 8 7 1}$ | $\mathbf{2 5 , 1 0 6}$ | $\mathbf{3 3 , 5 3 8}$ | $\mathbf{4 0 , 1 8 8}$ | $\mathbf{4 1 , 8 3 8}$ |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: |
| B | Operation and labour | 34,800 | 21,900 | 27,600 | 32,400 | 34,500 |
| C | Intercrop | 30,000 | - | - | - | - |
| D | Miscellaneous | 245 | 210 | 263 | 213 | 263 |
|  | Total | $\mathbf{9 8 , 9 0 0}$ | $\mathbf{4 7 , 2 0 0}$ | $\mathbf{6 1 , 4 0 0}$ | $\mathbf{7 2 , 8 0 0}$ | $\mathbf{7 6 , 6 0 0}$ |

Unit cost capitalised upto third year
Repayment period : 6 years

Indicative unit cost ₹ 2,07,500
Inclusive of grace period : 2 years

NABARD

### 4.17 OIL PALM

## Indicative Unit Cost for Cultivation of Oil Palm

Cost : Oil Palm Variety : Tenera
Spacing : 9x9m Area: 1Acre
(Amount in ₹)

| SI. <br> No. | Particulars | Years |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 1 | 2 | 3 | 4 | 5 |
| A | Material Cost |  |  |  |  |  |
| 1 | Land prepartion and levelling | 5,000 | - | - | - | - |
| 2 | Internal road formation for transportation | 0 | - | - | - | - |
| 3 | Planting material | 6,270 | 660 | - | - | - |
|  | (incl.10\% extra during IInd year) | 4,275 | 6,413 | 6,413 | 6,413 | 6,413 |
| 4 | Farm yard manure | - | - | - | - | - |
| 5 | Fertilisers | 578 | 1,155 | 1,733 | 1,733 | 1,733 |
| a | Urea | 3,616 | 7,232 | 10,848 | 10,848 | 10,848 |
| b | Single super phosphate | 1,292 | 2,584 | 3,876 | 4,845 | 4,845 |
| c | Murate of photash | 71 | 143 | 285 | 285 | 285 |
| d | Micro nutrients-boran (Borax) | 64 | 128 | 257 | 257 | 257 |
| 6 | Plant protection chemicals | 500 | 500 | 700 | 700 | 700 |
| 7 | Herbicide cost | 500 | 500 | 500 | 500 | 500 |
| 8 | Drip irrigation system | 25,000 | - | - | - | - |
|  | Sub Total-A | 47,166 | 19,315 | 24,611 | 25,580 | 25,580 |
| B | Operation and Labour | 12,000 | 7,200 | 7,200 | 7,800 | 8,400 |
| C | Pruning, Harvesting charges etc | - | - | - | 3,000 | 6,000 |
| D | Mis. $\operatorname{Costs}(₹)$ | 1,000 | 1,000 | 1,000 | 1,000 | 1,000 |
|  | Total | 60,200 | 27,500 | 32,800 | 37,400 | 40,017 |

Unit cost capitalised upto fourth year Repayment period : 9 years

Indicative unit cost ₹ $1,20,500$
Inclusive of grace period : 4 years

### 4.18 PALMAROSA

Indicative Unit Cost for Cultivation of Palmarosa


### 4.19 PLUM

## Indicative Unit Cost for Cultivation of Plum

Cost : Plum Variety : Rubino,Apricot Hale(Green gage),Gaviota,Abundance, etc. Spacing: 6x6m Area : 1 Hectare
(Amount in ₹)

| SI.No. | Particulars | Years |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 1 | 2 | 3 | 4 | 5 | 6 |
| A | Material Cost |  |  |  |  |  |  |
| 1 | Planting material (incl. 10\% extra) | 12,120 | - | - | - | - | - |
| 2 | Farm yard manure | 1,375 | 1,375 | 2,063 | 2,750 | 3,438 | 4,125 |
| 3 | Fertilisers | 9,503 | 12,617 | 15,571 | 18,685 | 30,821 | 31,142 |
| 4 | Micronutrients | 0 | 400 | 500 | 600 | 800 | 800 |
| 5 | Plant protection Chemicals | 1,000 | 1,000 | 1,250 | 1,500 | 1,500 | 2,000 |
| 6 | Irrigation | 1,000 | 1,000 | 1,500 | 2,000 | 2,000 | 2,000 |
|  | Sub Total | 24,998 | 16,392 | 20,883 | 25,535 | 38,559 | 40,067 |
| B | Operation and Labour | 36,900 | 12,300 | 14,100 | 14,700 | 20,100 | 21,600 |
| C | Intercrop | 3,000 | - | - | - | - | - |
| D | Miscellaneous | 70 | 57 | 121 | 110 | 78 | 141 |
|  | Total | 65,000 | 28,700 | 35,100 | 40,300 | 58,700 | 61,800 |
| Unit cost capitalised upto fifth year Repayment period : 10 years |  | Indicative unit cost ₹ 2,27,800 <br> Maintenance cost from 6th year ₹ 61,800 Inclusive of grace period : 5 years |  |  |  |  |  |

NABARD

4.20 CARDAMOM

Indicative Unit Cost for Cultivation of Cardamom
Cost : Cardamom Variety : Malabar, Vazhukka
Spacing : $3 \times 3 \mathrm{~m}$
Area : 1 Hectare
(Amount in ₹)

| S1. <br> No. | Particulars | Years |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 1 | 2 | 3 | 4 | 5 |
| A | Material Cost |  |  |  |  |  |
| 1 | Planting material (incl. 10\% extra) | 73,260 | 860 | - | - | - |
| 2 | Shade plants | 1,090 | 2,775 | 2,775 | 2,775 | 2,775 |
| 3 | Fertilisers | 14,760 | 23,271 | 23,271 | 23,271 | 23,271 |
| 4 | Plant protection chemicals | 1,000 | 2,000 | 3,000 | 3,000 | 3,000 |
| 5 | Staking material | 2,220 | - | - | - |  |
|  | Sub Total | 92,330 | 28,906 | 29,046 | 29,046 | 29,046 |
| B | Operation and labour | 93,900 | 46,800 | 54,000 | 57,000 | 57,000 |
|  | Total | 1,86,200 | 75,700 | 83,000 | 86,000 | 86,000 |
|  | Unit cost capitalised upto two year Repayment period : 6 years |  | Indicati Inclusiv | unit cost g grace pe | $\begin{aligned} & \text { 2,61,900 } \\ & \text { od : } 2 \text { years } \end{aligned}$ |  |

### 4.21 RUBBER

Indicative Unit Cost for Cultivation of Rubber

| Cost $: ~ R u b b e r ~$ | Variety | $:$ |
| :--- | :--- | :--- |
| Rpacing $:$ | $4.5 \mathrm{~m} \times 4.5 \mathrm{~m}$ | Area |
| Spare |  |  |


(Amount in ₹)

| Sl. <br> No. | Particulars | Years |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| A | Material Cost |  |  |  |  |  |  |  |
| 1 | Planting material (incl. 10\% extra) @ ₹ 75/- | 32,500 | - | - | - | - | - | - |
| 2 | Manure \& fertilizers <br> (Dosage NPK and FYM) |  | - | - | - | - | - | - |
| a | FYM | 17,000 | - | - | - | - | - | - |
| b | NPK | 8,000 | 8,000 | 7,000 | 4,000 | 750 | 1,000 | - |
| 3 | Plant protection chemicals | 3,000 | 4,800 | 3,500 | 2,700 | 4,500 | 3,500 | - |
|  | Sub Total | 60,500 | 12,800 | 10,500 | 6,700 | 5,250 | 4,500 | - |
| B | Operation and labour | 76,000 | 34,000 | 28,000 | 26,800 | 25,600 | 23,600 | 72,000 |
|  | Total | 1,36,500 | 46,800 | 38,500 | 33,500 | 31,000 | 28,100 | 72,000 |
|  | Unit cost capitalised upto sixth year |  | Indic | ative un | it cost ₹ | 3,14,400 |  |  |

NABARD

### 4.22 OIL PALM

## Indicative Unit Cost for Cultivation of Oil Palm

Cost : Oil Palm Variety : Tenera Hybrid
Spacing : 9x9 Triangular Area : 1 Acre
(Amount in ₹)

| $\begin{aligned} & \text { SI. } \\ & \text { No. } \end{aligned}$ | Particulars | Years |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 1 | 2 | 3 | 4 | 5 |
| A | Material Cost |  |  |  |  |  |
| 1 | Land prepartion and levelling | 5,000 | - | - | - | - |
| 2 | Internal road formation for transportation | - | - | - | - | - |
| 3 | Planting material <br> (incl.10\% extra during IInd year) | 6,270 | 660 | - | - | - |
| 4 | Farm yard manure | 4,275 | 6,413 | 6,413 | 6,413 | 6,413 |
| 5 | Fertilisers |  |  |  |  |  |
| a | Urea | 578 | 1,155 | 1,733 | 1,733 | 1,733 |
| b | Single super phosphate | 3,616 | 7,232 | 10,848 | 10,848 | 10,848 |
| c | Murate of photash | 1,292 | 2,584 | 3,876 | 4,845 | 4,845 |
| d | Micro nutrients-megnesium (MgSO4) | 71 | 143 | 285 | 285 | 285 |
| f | Micro nutrients-borax (Borax) | 64 | 128 | 257 | 257 | 257 |
| 6 | Plant Protection Chemicals | 500 | 500 | 700 | 700 | 700 |
| 7 | Herbicide cost | 500 | 500 | 500 | 500 | 500 |
| 8 | Drip irrigation system | 30,000 | - | - | - | - |
|  | Sub Total-A | 52,166 | 19,315 | 24,611 | 25,580 | 25,580 |
| B | Operation and labour | 12,000 | 7,200 | 7,200 | 7,800 | 8,400 |
| C | Pruning, Harvesting charges etc | - | - | - | 3,000 | 6,000 |
| D | Mis. $\operatorname{costs}(₹)$ | 1,000 | 1,000 | 1,000 | 1,000 | 1,000 |
|  | Total | 65,200 | 27,500 | 32,800 | 37,400 | 40,017 |

Unit cost capitalised upto fourth year
Repayment period : 9 years

Indicative unit cost ₹ $1,62,900$
Inclusive of grace period : 4 years

NABARD
4.23 MANGO (3x2)

Indicative Unit Cost for Cultivation of Mango

Cost : Mango Variety : Banganapalli, Aphonso, Imam
Spacing : $3 \times 2 \mathrm{~m}$ Area : 1 Acre

(Amount in ₹)

| $\begin{aligned} & \text { SI. } \\ & \text { No. } \end{aligned}$ | Particulars | Years |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 1 | 2 | 3 | 4 | 5 |
| A | Labour |  |  |  |  |  |
| 1 | Land clearing \& development | 3,000 | 0 | 0 | o | o |
| 2 | Layout and digging of pits | 9,000 | 1,500 | o | o | o |
| 3 | Filling of pits | 4,200 | 1,200 | $\bigcirc$ | o | o |
|  | Planting \& plant support (staking) | 4,800 | 600 | O | o | o |
| 5 | FYM \& fertilizers application | 3,000 | 3,000 | 3,600 | 3,600 | 3,600 |
| 6 | Plant protection | 1,200 | 1,200 | 1,800 | 1,800 | 2,400 |
| 7 | Irrigation | 3,000 | 3,000 | 3,600 | 3,600 | 3,600 |
| 8 | Earthing up, Weeding trainign \& pruning and other intercultural operations | 3,600 | 4,200 | 4,800 | 5,400 | 5,400 |
| 9 | Harvesting, carriage \& packaging cost | 0 | 0 | 2,400 | 3,000 | 3,000 |
|  | Sub Total-A | 31,800 | 14,700 | 16,200 | 17,400 | 18,000 |
| B | Material |  |  |  |  |  |
| 1 | Planting material (including transportation)-seedling/rootstock | 26,640 | 2,664 | o | o | o |
| 2 | Farm yard manure | 6,660 | 9,990 | 9,990 | 13,320 | 13,320 |
| 3 | Vermicomposting | o | - | o | o | o |
| 4 | Other concentrated manures (Bonemeal,fish,meal etc.,) | - | - | - | - | - |
| 5 | N | 866 | 1,732 | 2,597 | 3,463 | 4,329 |
| 6 | P | 14,825 | 7,060 | 10,589 | 14,119 | 17,649 |
| 8 | K | 1,998 | 3,996 | 5,994 | 7,992 | 9,990 |
| 8 | Irrigation (diesel/electricity/lumpsum requirements) | 2,000 | 2,000 | 2,000 | 2,000 | 2,000 |
| 9 | Plant protection | 3,330 | 3,996 | 4,662 | 5,328 | 29,970 |
| 10 | Fencing | 1,000 | 0 | o | 0 | o |
| 11 | Others if any (specify) | 10,000 | 0 | 0 | 0 | 0 |
|  | Sub Total-B | 67,319 | 31,437 | 35,833 | 46,222 | 77,258 |
|  | Total A+B | 99,119 | 46,137 | 52,033 | 63,622 | 95,258 |
| C | Miscellaneous Exp/(10\%) of A+B | 9,912 | 4,614 | 5,203 | 6,362 | 9,526 |
| D | Total Cost | 1,09,031 |  |  |  |  |
| E | Number of years capitalisation (Years) | 3 |  |  |  |  |
| F | Cost reckoned for unit cost | 2,17,018 |  |  |  |  |
| G | Capitalised Intercropping Cost | o |  |  |  |  |
| H | Unit cost | 2,17,000 |  |  |  |  |

Repayment period:7 years

NABARD

### 4.24 MANGO (5x5) <br> Indicative Unit Cost for Cultivation of Mango

Cost : Mango Variety : Banganapalli, Mallika, Neelam, Totapuri Spacing : $5 \times 5 \mathrm{~m}$ Area : 1 Acre

| SI. | Particulars | Years |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No. |  | 1 | 2 | 3 | 4 | 5 | 6 |
| A | Labour |  |  |  |  |  |  |
| 1 | Land clearing \& development | 3,500 | 0 | 0 | 0 | 0 | 0 |
| 2 | Layout and digging of pits | 4,200 | 700 | 0 | 0 | 0 | 0 |
| 3 | Filling of pits | 2,100 | 350 | 0 | 0 | 0 | 0 |
| 4 | Planting \& plant support (staking) | 2,100 | 350 | 0 | 0 | 0 | 0 |
| 5 | FYM \& fertilizers application | 1,400 | 1,400 | 1,400 | 2,100 | 2,100 | 2,100 |
| 6 | Plant protection | 1,050 | 1,050 | 1,400 | 1,050 | 1,750 | 1,750 |
| 7 | Irrigation | 2,100 | 2,100 | 2,100 | 2,100 | 2,100 | 2,100 |
| 8 | Earthing up, weeding trainign \& pruning and other intercultural operations | 2,100 | 2,100 | 2,100 | 2,100 | 2,100 | 2,100 |
| 9 | Harvesting, carriage \& packaging cost | 0 | 0 | 0 | 1,400 | 2,100 | 2,800 |
|  | Sub Total-A | 18,550 | 8,050 | 7,000 | 8,750 | 10,150 | 10,850 |
| B | Material |  |  |  |  |  |  |
| 1 | Planting material (including transportation)-seedling/rootstock | 6,400 | 640 | 0 | 0 | 0 | 0 |
| 2 | Farm yard manure | 1,200 | 1,200 | 2,400 | 3,600 | 3,600 | 3,600 |
| 3 | N | 208 | 416 | 624 | 832 | 1,040 | 1,040 |
| 4 | P | 848 | 1,696 | 2,544 | 3,392 | 4,240 | 4,240 |
| 5 | K | 480 | 960 | 1,440 | 1,920 | 2,400 | 2,400 |
| 6 | Irrigation <br> (diesel/electricity/lumpsum requirements) | O | 0 | O | 0 | O | 0 |
| 7 | Plant protection | 1,000 | 1,000 | 1,200 | 1,500 | 1,500 | 1,500 |
| 8 | Live fencing | 1,000 | 1,000 | 1,200 | 1,500 | 1,500 | 1,500 |
| 9 | Cost of drip irrigation system | 20,000 | 0 | 0 | 0 | 0 | 0 |
|  | Sub Total-B | 31,136 | 5,912 | 8,208 | 11,244 | 12,780 | 12,780 |
|  | Total A+B | 49,686 | 13,962 | 15,208 | 19,994 | 22,930 | 23,630 |
| C | Miscellaneous Exp/(10\%) of A+B | 1,000 | 1,000 | 1,000 | 1,000 | 1,000 | 1,000 |
| D | Total Cost | 50,686 | 14,962 | 16,208 | 20,994 | 23,930 | 24,630 |
| E | Number of years capitalisation (Years) | 5 |  |  |  |  |  |
| F | Cost reckoned for unit cost | 1,26,780 |  |  |  |  |  |
| G | Capitalised intercropping cost | 0 |  |  |  |  |  |
| H | Unit cost | 1,26,800 |  |  |  |  |  |

Repayment period : 9 years
Inclusive of grace period : 5 years

### 4.25 TISSUE CULTURE BANANA

Indicative Unit Cost for Cultivation of TC Banana
Cost : TC Banana Variety : Grand Naine
Spacing : $1.65 \times 1.65 \mathrm{~m}$ Area : 1 Acre

(Amount in ₹)

| SI. <br> No. | Particulars | Years |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | 1 | 2 | 3 |
| A | Labour |  |  |  |
| 1 | Land clearing \& development | 2,100 | 0 | 0 |
| 2 | Layout and digging of pits | 14,400 | 400 | 400 |
| 3 | Filling of pits | 3,000 | 200 | 200 |
| 4 | Planting \& plant support (staking) | 3,600 | 200 | 200 |
| 5 | FYM \& fertilizers application | 1,500 | 1,500 | 1,500 |
| 6 | Plant protection | 1,500 | 1,500 | 1,500 |
| 7 | Irrigation | 600 | 600 | 600 |
| 8 | Earthing up, weeding trainign \& pruning and other intercultural operations | 2,400 | 2,400 | 2,400 |
| 9 | Harvesting, carriage \& packaging cost | 3,500 | 3,500 | 3,500 |
|  | Sub Total-A | 32,600 | 10,300 | 10,300 |
| B | Material |  |  |  |
| 1 | Planting material (including transportation)-seedling/rootstock | 20,580 | 2,058 | 2,058 |
| 2 | Farm yard manure | 17,640 | 17,640 | 17,640 |
| 3 | Vermicomposting | o | o | o |
| 4 | Other concentrated manures (Bonemeal,fish,meal etc.,) | - | - | - |
| 5 | N | 3,622 | 3,622 | 3,622 |
| 6 | P | 7,791 | 7,791 | 7,791 |
| 7 | K | 9,555 | 9,555 | 9,555 |
| 8 | Irrigation <br> (diesel/electricity/lumpsum requirements) | 1,000 | 1,000 | 2,000 |
| 9 | Plant protection | 300 | 300 | 300 |
| 10 | Fencing | - | - | - |
| 11 | Staking / propping |  |  |  |
|  | Bamboo poles (@2 poles per plant)-₹ $10 /$ - per pole | 22,500 | - | - |
|  | Labour for fixing poles including rope, etc. | 2,500 | - | - |
|  | Sub Total-B | 85,488 | 41,966 | 42,966 |
|  | Total A+B | 1,18,088 | 52,266 | 53,266 |
| C | Miscellaneous $\exp /(10 \%)$ of $\mathrm{A}+\mathrm{B}$ | 700 |  |  |
| D | Total Cost | 1,18,788 | 52,266 | 53,266 |
| E | Number of years capitalisation (Years) | 1 |  |  |
| F | Cost reckoned for unit cost | 1,18,788 |  |  |
| G | Unit cost | 1,18,800 | 95,700 | 23,100 |

Repayment period : 3 years
Inclusive of grace period : o years

(Amount in ₹)

| SI. <br> No. | Particulars | Years |  |
| :---: | :---: | :---: | :---: |
|  |  | 1 | 2 |
| A | Material |  |  |
| 1 | Planting material (including transportation)-seedling/rootstock | 2,56,000 | o |
| 2 | Farm yard manure | 8,000 | o |
| 3 | Vermicomposting | o | o |
| 4 | Other concentrated manures (Bonemeal,fish,meal etc.,) | - | - |
| 5 | N | 1,313 | 1,641 |
| 6 | P | 11,089 | 6,161 |
| 7 | K | 3,433 | 2,452 |
| 8 | Irrigation (diesel/electricity/lumpsum requirements) | 25,000 | 2,000 |
| 9 | Plant protection | 3,000 | 5,000 |
| 10 | Fencing | O | o |
| 11 | Erection of stones / CC pillras of 10 ' height at $2.5 \times 2.5 \mathrm{~m}$ spacing @ ₹ 350 per pillar | 2,24,000 | o |
| 12 | Planting @ plant support (staking)/steel framing \& erection | 64,000 | 17,254 |
|  | Sub Total-A | 5,95,835 | 17,254 |
| B | Labour(B) | 30,040 | 18,400 |
|  | Total A+B | 6,25,875 | 35,654 |
|  | Rounded | 6,25,900 | 35,600 |
| Unit cost capitalised upto second year |  | 6,61,500 |  |

Yield and income parameters :

| Yield \& Price-Assumption | $\mathbf{1 ~ Y r}$ | $\mathbf{2 ~ Y r}$ | $\mathbf{3 Y r}$ | $\mathbf{4 Y r}$ |
| :--- | :---: | :---: | :---: | :---: |
| Yield per tree(Kg) | 0 | 0.9 | 1.25 | 1.8 |
| Yield per unit (Kg/Acre) | 0 | 2,304 | 3,200 | 4,608 |
| Sale Price (₹ /Kg) | 100 | - | - | - |
| Income (₹ per acre) | 0 | $2,30,400$ | $3,20,000$ | $4,60,800$ |

## Financial viability and repayment :

- Financial viability : $\operatorname{IRR}>50 \%$, BCR 1.59:1.00
- Repayment : 6 years including three years grace period


## Indicative Unit Cost for Cultivation of Oyster Mushroom

Capacity: $300 \mathrm{~kg} /$ cycle

| A | Fixed Costs | (Amount ₹) |
| :---: | :---: | :---: |
| 1. | Temporary sheds : <br> Shed of $30^{\prime} \times 10^{\prime} \times 77^{\prime}$ (300 sq.ft) | 30,000 |
| 2. | Equipment's | - |
| a. | Sprinklers | 12,000 |
| b. | Tools, rope, sand etc. | 2,000 |
|  | Sub Total | 44,000 |
| B | Operational cost (per cycle) |  |
|  | Paddy straw | 3,150 |
|  | Cost of bags | 750 |
|  | Cost of Bavistin \& Formaldehyde | 1,000 |
|  | Spawn cost | 6,000 |
|  | Labour chargers | 5,500 |
|  | Fuel / Power cost Lumpsum | 4,000 |
|  | Sub-total | 20,400 |
| C | Total Cost (A + B) | 64,400 |
|  | Indicative unit cost | 64,400 |

## Repayment period: 6 years

4.28 BEE KEEPING

Indicative Unit Cost for Cultivation of Bee Keeping
Size : 25 Bee colonies


### 4.29 SERICULTURE

Indicative Unit Cost for DFL-300 (DFLs) per crop x 2 crops during first year and 5 crops from second year onwards

| S.No | Particulars | (Amount ₹) |
| :---: | :--- | ---: |
| A | Farm Sector |  |
| 1 | Sericulture (Mulberry cultivation V1 variety with one year maintenance) | 50,000 |
| 2 | Construction of rearing shed (50ft, 20ft, 15ft) | $5,00,000$ |
| 3 | Purchase of rearing equipment | 75,000 |
| 4 | Rearing cost | 18,000 |
|  | Total Investment Cost | $\mathbf{6 , 4 3 , 0 0 0}$ |

## Chawkie Rearing Centre :

| S.No | Details | Unit sive | (Amount ₹) |
| :---: | :--- | :---: | :---: |
| 1 | Mulberry garden establishment | 2 acre | $1,20,000$ |
| 2 | Rearing equipments | 5000 DFLs per batch | $6,17,000$ |
| 3 | Rearing house \& incubation chamber | $1000 \mathrm{sft}+200 \mathrm{sft}$ | $7,20,000$ |
| 4 | Rearing cost for first batch |  | $1,80,300^{*}$ |
|  | Total Cost |  | $16,37,300$ |

* Rearing cost per batch is ₹ 60,100 and considering capitalisation of 3 batch amounting to ₹ $1,80,300 /-$
Financial viability and bankability of chawkie rearing of $5000 \mathrm{DFLs} /$ batch :
a. IRR-89\%
b. BCR - 1.35 : 1
c. Repayment period - 4 years with 6 months moratorium
d. Margin money considered - $25 \%$ of TFO
e. State Government Subsidy not taken into account for working out the viability.
4.30 PANDAL BASED VEGETABLE CULTIVATION

| S.No | Item of the Investment | Amount(₹) | Remarks |
| :---: | :--- | ---: | :--- |
| 1 | Cost of construction of pandal |  |  |
| a | Poles (200/acre)@ | 70,000 | ₹ 200 per acre-350 poles stone pillars |
| b | Cost of GI wire | $1,12,500$ | 15q per acre @ ₹ 7500/q |
|  | Total material cost | $\mathbf{1 , 8 2 , 5 0 0}$ |  |
| c | Labour cost | 36,500 | $20 \%$ of material cost |
|  | Total Cost | $\mathbf{2 , 2 0 , 0 0 0}$ | Rounded off |
| d | Capitalized cost of cultivation | 30,000 | per acre |
|  | Total Unit cost | $\mathbf{2 , 5 0 , 0 0 0}$ |  |

## PLANTATION / HORTICULTURE: TERMS AND CONDITIONS - SPECIAL

1. While selecting villages/areas for financing, the bank shall ensure compactness of areas to facilitate supervision. The bank may identify suitable areas in consultation with the concerned department of the State Government or commodity boards etc., as the case maybe.
2. Loans under the scheme shall be given to those beneficiaries who have assured water supply facilities to irrigate plants in areas where rainfed cultivation is not possible.
3. Loans shall ensure that adequate loan is given for the activities that the farmer intends to undertake.
4. The bank shall satisfy itself that the planting materials of the required quantity and quality are procured by beneficiary from reliable sources such as nurseries of Universities of State Government or any other nurseries approved by the concerned department of the State Government etc.
5. The bank shall ensure that the beneficiary observes the following technical norms:
a. The pit dug will be of standard size and with recommended spacing and number of plants as indicated by Tamil Nadu Agricultural University.
b. The pits will be filled with top soil, farm yard manure and fertilizers before planting is done.
c. The bank to ensure that vegetative propagated planting materials are used for raising orchard crops.
d. The young saplings will be staked immediately after planting and shade cover to be provided wherever necessary and irrigated.
e. Adequate fencing arrangements have to be provided as per local practices with a view to protecting the garden from cattle and trespassers.
f. Watering of plants shall be done during dry months of first 2 to 3 seasons for rainfed conditions.
g. The recommended fertilization and plant protection schedules of Commodity Boards / TNAU shall be followed.
h. Mixed cropping will be done wherever possible as in the case of coffee, arecanut and coconut.The beneficiaries under the scheme will raise inter crops preferably leguminous crops during the first 4 to 5 years so as to improve returns from main investments.
I. Adequate shade may be developed for protection of crops like coffee, coconut, cardamom and a minimum number of shade trees will have to be retained per acre. Quick growing trees like Eruthrinasp and subabul etc. may also be planted wherever necessary. Proper and adequate soil conservation and drainage arrangements shall be ensured.
j. Installation of processing equipment, civil engineering works shall be carried out according to approved plants and designs.
6. The Bank staff may provide all necessary technical guidance and supervision or otherwise shall satisfy itself that the required technical guidance and supervision is made available by the concerned department of the State Government or Commodity Board etc.,

7. The suggested soil conservation measures such as contour bunding etc. should be completed before the layout and digging for planting are taken up.
8. Necessary arrangements should be made for marketing so that the beneficiaries get fair prices.
9. Bank shall explore possibilities of necessary tie up arrangements with the concerned marketing
agencies for recovering the loan instalments through sale proceeds payable by beneficiaries and for this purpose bank shall enter into necessary agreements with beneficiaries also wherever possible.
10. The bank shall grant loans to individual beneficiaries based on a case appraisal and assessment of the repayment capacity of the borrowers.

## SERICULTURE:TERMS AND CONDITIONS -SPECIAL

1. While selection village/areas for financing sericulture, the bank shall ensure compactness of areas to facilitate supervision. The bank may identify suitable areas in consultation with the concerned department of the State Government or Commodity Boards etc. as the case may be.
2. Loans under the scheme shall be given to those beneficiaries who have assured water supply facilities to irrigate plants in areas where rainfed cultivation is not possible.
3. Loans shall be issued in respect of investment for raising plants in first and maintenance in subsequent years till the plant comes to bearing stage. However, where loans are proposed to be availed of, only in the first year of planting and not
 for its maintenance during the subsequent years, the bank shall satisfy itself that the beneficiaries have their own resources to meet expenditure for maintenance of garden in the subsequent years.
4. The bank shall satisfy itself that the planting materials of the required quantity and quality are procured by beneficiary from reliable sources such as nurseries of Universities of State Government or any other nurseries approved by the concerned department of the State Government etc.,
5. The bank shall ensure that the beneficiary observes the following technical norms.
a. The pits dug will be of standard size and with recommended spacing and number of plants as per the recommendations of Central Sericulture Research Institute.
b. The pits will be filled with top soil, farm yard manure and fertilizer before planting is done.
c. Only high yielding recommended varieties shall be planted in place of traditional varieties.
d. The young saplings will be staked immediately after planting and shade cover provided wherever necessary and irrigated.
e. Adequate fencing arrangements will have to be provided as per local practices with a view to protecting the garden from
 cattle and trespassers.
f. Watering of plants shall be done during dry months of first 2 to 3 seasons in respect of plants to be raised under rain fed conditions.
g. The recommended fertilization and plant protection schedules of Commodity Board / TNAU/ Department of Horticulture shall be followed.
h. The components like fertilizers, chemicals etc, shall disbursed only in kind.
I. Proper and adequate soil conservation and drainage arrangements shall be ensured.
6. The Bank staff may provide necessary technical guidance and supervision. If this is not possible the bank shall satisfy itself that the required technical guidance and supervision is made available by the concerned department of the State Government or Commodity Board etc.
7. The suggested soil conservation measures such as contour bunding etc, should be completed before layout and digging for planting are taken up.
8. Necessary arrangements should be made for marketing of the produce so that the beneficiaries get fair prices. Bank shall make necessary tie up arrangements with the concerned marketing agencies for recovering the loan through sale proceeds payable by beneficiaries and
 for this purpose bank shall enter into arrangements with the beneficiaries also wherever possible.
9. The bank shall grant loans to individual beneficiaries based on a case appraisal and assessment of the repayment capacity of the borrowers.
10. The technical officers of the implementing branches shall be trained at CSRTI Mysore, before commencing financing under the scheme.
11. After identification of the beneficiaries, the bank shall first finance them for plantation of mulberry. Thereafter they may be sponsored for training at the nearest CSRTI extension centre. The loan for rearing house and equipment's shall be released only after beneficiaries are trained.

## 5. ANIMAL HUSBANDRY

| Investment | Unit Size | Cost (₹) |
| :---: | :---: | :---: |
| Crossbred cows | 1+1 | 1,53,000 |
| Graded Murrah Buffaloes | $1+1$ | 1,70,000 |
| Graded Murrah Buffaloes | $5+5$ | 14,80,000 |
| Crossbred cows | $5+5$ | 13,60,000 |
| Mini Dairy | $5+5$ | 11,00,000 |
| Calf rearing (heifer calves) | 10 | 4,35,000 |
| Calf rearing (heifer calves) | 20 | 9,70,000 |
| Vermi Compost with milch animal unit | 1 | 25,200 |
| Calf rearing (Buffalo male calves) | 10 | 2,50,000 |
| Calf rearing (Buffalo male calves) | 50 | 12,00,000 |
| Bulk milk cooling unit | 5000 litres | 20,00,000 |
| Dairy Processing equipments Indigenour milk Products |  | 13,20,000 |
| Dairy product transporation \& Gold chain |  | 26,50,000 |
| Cold storage facilities for milk and milk products |  | 33,00,000 |
| Dairy Marketing outlet / parlour |  | 3,00,000 |
| Private Veterinary Clinic - Stationary |  | 2,00,000 |
| Private Veterinary Clinic - Mobile Clinic + two wheeler |  | 2,60,000 |


B) Goat / Sheep

| Investment | Unit Size | Cost $(₹)$ |
| :--- | :---: | :---: |
| Rearing Unit | $10+1$ | $1,08,000$ |
| Breeding Unit | $100+5$ | $21,00,000$ |


C) Pig Farming


| Investment | Unit Size | Cost (₹) |
| :--- | :---: | :---: |
| Pig breeding farms | $20+4$ | $11,45,000$ |
| Pig rearing \& fattening units | $3+1$ | $2,90,000$ |
| Retail outlets | - | $2,00,000$ |

D) Poultry Development

| Investment | Unit Size | Cost (₹) | Remarks |
| :--- | ---: | ---: | ---: |
| Broiler farming <br> Layer farming | 5000 | $21,98,000$ | Under Contract farming |
| Breeding farms | $3,25,00,000$ | 30,00,000 | For low input technology birds like <br> turkey, ducks, emu, etc., |
| Central Grower Units | $40,00,000$ | Upto 16000 layer chicks per batch |  |
| Hybrid layer (chicken) units - 5000 Birds | $20,00,000$ |  |  |
| Hybrid broiler (chicken) units -5000 Birds | $11,20,000$ |  |  |
| Rearing other species of poultry | $20,00,000$ | Varies with the species and unit size |  |
| Feed mixing units, Disease Investigation Lab | $16,00,000$ |  |  |
| Transport vehicles | $8,00,000$ | - |  |
| Refrigerated Transport vehicles | $15,00,000$ | - |  |
| Retail outlets (Dressing Units) | $10,00,000$ | - |  |
| Retail outlets (Marketing Units) | $15,00,000$ | - |  |
| Mobile marketing units | $10,00,000$ | - |  |
| Cold storage for poultry products | $20,00,000$ | - |  |
| Egg broiler carts | 15,000 | - |  |

Tamil Nadu Regional Office

## 6. FORESTRY \& WASTELAND DEVELOPMENT

A) CASUARINAS (Casuarina spp.)

| SI.No. | Particulars | Casuarina clonal plantation (MTP-2)for one rotation |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Unit | Qty. | $\begin{gathered} \text { Unit } \\ \text { Rate } \\ \text { (₹) } \end{gathered}$ | $\begin{array}{\|c\|} \hline \text { Cost } \\ \text { per } \\ \text { Ha (₹) } \end{array}$ | Projection of Expenditure |  |  |  |  |
|  |  |  |  |  |  | $\begin{aligned} & \text { oth } \\ & \text { year } \end{aligned}$ | $\begin{array}{\|c\|} \hline \text { 1st } \\ \text { year } \end{array}$ | $\begin{aligned} & \text { 2nd } \\ & \text { year } \end{aligned}$ | $\begin{aligned} & \hline \begin{array}{l} 3 \mathrm{rd} \\ \text { year } \end{array} \end{aligned}$ | Total |
| A | Cost of Planting |  |  |  |  |  |  |  |  |  |
| 1 | Cost of initial ploughing | Hrs | 4 | 800 | 3,200 | 3,200 | 0 | 0 | o | 3,200 |
| 2 | Alignment, Digging of pits and channel formation ( 1.5 m x 1.5 m ) | Nos | 4,500 | 10 | 45,000 | 45,000 | o | o | o | 45,000 |
| 3 | Cost of casuarina clones | Nos | 4,500 | 5 | 22,500 | 22,500 | 0 | 0 | 0 | 22,500 |
| 4 | Casuality replacement(seedlings)10 percent | Nos | 5 | 450 | 2,250 | 2,250 | 0 | o |  | 2,250 |
| 5 | Basal application |  | 4,500 | 5 | 22,500 | 22,500 | o | o |  | 22,500 |
| 6 | Installation of drip irrigation system | - | 4,501 | 65,000 | 65,000 | 65,000 | 0 | 0 | 0 | 65,000 |
|  | Sub-Total |  |  |  |  | 1,60,450 | 0 | 0 | 0 | 1,60,450 |
| B | Cost of Maintenance |  |  |  |  |  |  |  |  |  |
| 1 | Irrigation and general maintenance | MD | 50 | 450 | 0 | 22,500 | 22,500 | 22,500 | 22,500 | 90,000 |
| 2 | Plant protection chemical and application |  |  | 1,000 | 0 |  | 1,000 | 1,000 | 1,000 | 3,000 |
| 3 | Manuring and fertilizer application | LS | 5 | 1,000 | o | - | 4,000 | 4,000 | 4,000 | 12,000 |
| 4 | Harvesting cost (₹ 1900 for pulpwood and ₹ 1500 for poles) |  | - |  | o | - |  | - |  | 2,65,000 |
|  | Total |  |  |  | 0 | 22,500 | 27,500 | 27,500 | 2,92,500 | 3,70,000 |
|  | Sub - Total (A+B) |  |  |  | 0 | 1,82,950 | 27,500 | 27,500 | 2,92,500 | 5,30,450 |

Unit Cost 2023-24

## B) MALABAR NEEM (Melia dubia)

| Particulars | Cost of Cultivation of Meliadubia - Ply wood - $4 \times 4 \mathrm{~m}$ |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Unit | Qty. | Unit Rate (₹) | $\begin{array}{c\|} \hline \text { Cost } \\ \text { per } \\ \text { Ha (₹) } \end{array}$ | Projection of Expenditure |  |  |  |  |  | (Amount in ₹) |  |
|  |  |  |  |  | 0 | 1st | 2nd | 3rd | 4th | 5th | 6th | Total |
| A.Establishment Cost <br> Cost of initial ploughing Alignment,Digging of pits and@₹. 10.00 per pit Cost of manure and application Cost of meliadubiaseedlings @₹. 10 per plant Planting and channel formation Casuality replacement Installation of drip irrigation system | Hrs <br> Nos <br> LS <br> Nos <br> Nos <br> Nos | $\begin{array}{r} 4 \\ 625 \\ 1 \\ 625 \\ 625 \\ 125 \\ 1 \end{array}$ | 800 10 10 10 10 85,000 | $\begin{array}{r} 3,200 \\ 6,250 \\ 6,000 \\ 6,250 \\ 6,250 \\ 1,250 \\ 85,000 \end{array}$ | $\begin{array}{r} 3,200 \\ 6,250 \\ 6,000 \\ 6,250 \\ 6,250 \\ 1,250 \\ 85,000 \end{array}$ | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | $\begin{array}{r} 3,200 \\ 6,250 \\ 6,000 \\ 6,250 \\ 6,250 \\ 1,250 \\ 85,000 \end{array}$ |
| Sub-Total |  |  |  |  | 1,14,200 | 0 | 0 | 0 | 0 | 0 | 0 | 1,14,200 |
| B.Maintenace Cost <br> Irrigation and maintenance Soil working / ploughing Manure and fertilizer applicaiton | $\begin{gathered} \text { Months } \\ \text { Hrs } \\ \text { No } \end{gathered}$ | $\begin{gathered} 100 \\ 3 \\ 625 \end{gathered}$ | $\begin{array}{r} 450 \\ 800 \\ 10 \end{array}$ | $\begin{array}{r} 45,000 \\ 2,400 \\ 6,250 \end{array}$ | $\begin{array}{r} 45,000 \\ 0 \\ 6,250 \end{array}$ | $\begin{array}{r} 45,000 \\ 2,400 \\ 6,250 \end{array}$ | $\begin{array}{r} 45,000 \\ 2,400 \\ 6,250 \end{array}$ | $\begin{array}{r} 45,000 \\ 2,400 \\ 6,250 \end{array}$ | 45,000 <br> 2,400 <br> 6,250 | $\begin{array}{r} 45,000 \\ 2,400 \\ 6,250 \end{array}$ | $\begin{array}{r} 49,500 \\ 2,640 \\ 6,875 \end{array}$ | $\begin{array}{r} 31,9500 \\ 14,640 \\ 44,375 \end{array}$ |
| Total |  |  |  |  | 51,250 | 53,650 | 53,650 | 53,650 | 53,650 | 53,650 | 59,015 | 3,78,515 |
| Sub-Total ( $\mathrm{A}+\mathrm{B}$ ) |  |  |  |  | 1,65,450 | 53,650 | 53,650 | 53,650 | 53,650 | 53,650 | 59,015 | 4,92,715 |

Tree crop duration : 9 years ; Average maintenance cost per year from $7^{\text {th }}$ year to $9^{\text {th }}$ year is ₹ 59,015 ; Harvesting cost at $9^{\text {th }}$ year: ₹ $6,00,000$


D) Eucalyptus (Eucalyptus spp)

| Cost of Cultivation of Eucalyptus - Pulp wood - 3x1.35m (Irrigated condition) for one rotation |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Particulars | Projection of Expenditure (Amount in ₹) |  |  |  |  |  |  |  |  |  |  |
|  | Unit | Qty. | $\underset{(\mathfrak{₹})}{\left\lvert\, \begin{array}{l} \text { Unit Rate } \end{array}\right.}$ | Cost per Ha (₹) | 0 | 1st | 2nd | 3rd | 4th | 5th | Total |
| A.Cost of Establishment <br> Cost of Initial Ploughing <br> Alignment, Digging of pits and <br> @ ₹ 10.00 per pit <br> Basal Application <br> Cost of Eucalyptus clones <br> Refilling of pits,planting <br> Casuality replacement <br> Installation of drip irrigation system | Hrs <br> Nos <br> MD <br> Nos | $\begin{array}{r} 4 \\ 2,200 \\ \\ 2,200 \\ 2,200 \\ 2,200 \\ 125 \end{array}$ | $\begin{array}{r} 800 \\ 10 \\ 10 \\ 5 \\ 10 \\ 5 \end{array}$ | $\begin{array}{r} 3,200 \\ 22,000 \\ \\ 22,000 \\ 11,000 \\ 22,000 \\ 625 \\ 65,000 \end{array}$ | $\begin{array}{r} 32,000 \\ 22,000 \\ 22,000 \\ 11,000 \\ 22,000 \\ 625 \\ 65,000 \end{array}$ |  | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | $\begin{array}{r} 3,200 \\ 22,000 \\ \\ 22,000 \\ 11,000 \\ 22,000 \\ 625 \\ 65,000 \end{array}$ |
| Total |  |  |  | 1,45,825 | 1,45,825 | 0 | 0 | 0 | 0 | 0 | 1,45,825 |
| B.Cost of Maintenance <br> Ploughing and Soil working Manuring and fertilizer application Irrigation and maintenance Harvesting cost | Hrs <br> LS <br> MD | $\begin{gathered} 3 \\ - \\ 50 \end{gathered}$ | $\begin{array}{r} 800 \\ 1,000 \\ 450 \\ 1,800 \end{array}$ | $\begin{array}{r} 800 \\ 1,000 \\ 450 \\ 1,800 \end{array}$ | 22,500 | $\begin{array}{r} 2,400 \\ 4,000 \\ 22,500 \end{array}$ | $\begin{array}{r} 2,400 \\ 4,500 \\ 22,500 \end{array}$ | $\begin{array}{r} 2,400 \\ 5,000 \\ 22,500 \end{array}$ | $\begin{array}{r} 2,400 \\ 5,500 \\ 22,500 \\ 3,60,000 \end{array}$ | $\begin{array}{r} 2,400 \\ 5,500 \\ 22,500 \end{array}$ | $\begin{array}{r} 12,000 \\ 24,500 \\ 1,35,000 \\ 3,60,000 \end{array}$ |
| Total |  |  |  | 4,050 | 22,500 | 28,900 | 29,400 | 29,900 | 3,90,400 | 30,400 | 5,31,500 |
| Sub-Total ( $\mathrm{A}+\mathrm{B}$ ) |  |  |  | 1,49,875 | 1,68,325 | 28,900 | 29,400 | 29,900 | 3,90,400 | 30,400 | 6,77,325 |

Average maintenance cost per year from $6^{\text {th }}$ year to $10^{\text {th }}$ year: ₹ 33,440


## A.Cost of Planting

Cost of initial ploughing
Hrs 3
2,400


${ }_{-}^{\circ}$
300
65,000 1,08,085

\& $\stackrel{\circ}{\circ}$道道
Projection of Expenditure

\#-No harvesting cost is charged for the farmer at 4th year of harvest

| SI.No | Particulars | Unit | 4th Year | 8th Year | 12th Year 20th Year |  |
| :---: | :--- | :---: | :---: | :---: | :---: | :---: |
| 1. | No of trees | No | 555 | 277 | 135 | 135 |
| 2. | Yield/tree | Kg | 80 | 200 | 400 | 800 |
| 3. | Total yield | Tonnes | $44 \cdot 4$ | $55 \cdot 4$ | 54 | 108 |
| 4. | Price tonnes | $₹$ | 5,000 | 8,000 | 15,000 | 25,000 |
| 5. | Income | $₹$ | $\mathbf{2 , 2 2 , 0 0 0}$ | $\mathbf{4 , 4 3 , 2 0 0}$ | $\mathbf{8 , 1 0 , 0 0 0}$ | $\mathbf{2 7 , 0 0 , 0 0 0}$ |

Unit Cost 2023-24

## G) SHISHAM (Dalbergia sissoo)

| SI.No. | Particulars | Projection of Expenditure |  |  |  |  |  |  | Amount in(₹) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Unit | Qty. | $\begin{array}{\|c\|} \hline \text { Unit } \\ \text { Rate ( } \mathrm{F}) \end{array}$ | Cost per <br> Ha (₹) | 0th | 1st | 2nd | 3rd | 4th | 5th |
| 1 | A.Cost of Planting Cost of initial ploughing | Hrs | 4 | 800 | 800 | 3,200 | 0 | 0 | 0 | 0 | 0 |
| 2 | Alignment, Digging of pits | Nos | 625 | 10 | 10 | 6,250 | 0 | 0 | 0 | 0 | 0 |
| 3 | Cost of manure and application | LS |  | 156 | 156 | 156 | 0 | 0 | 0 | 0 | 0 |
| 4 | Cost of dalbergiasissoo seedlings | Nos | 625 | 10 | 10 | 6,250 | 0 | 0 | 0 | 0 | 0 |
| 5 | Planting and channel formation | Nos | 625 | 10 | 10 | 6,250 | 0 | 0 | 0 | 0 | 0 |
| 6 | Casualty replacement | MD | 1 | 450 | 450 | 450 | 0 | 0 | 0 | 0 | 0 |
| 7 | Seedling cost | Nos | 60 | 10 | 10 | 600 | 0 | 0 | 0 | 0 | 0 |
| 8 | Drip installation |  | - | 75,000 | 75,000 | 75,000 | 0 | 0 | 0 | 0 | 0 |
|  | Sub-Total |  |  |  |  | 98,156 | 0 | 0 | 0 | 0 | 0 |
|  | B.Cost of Maintenance |  |  |  |  |  |  |  |  |  |  |
| 1 | Irrigation and maintenance | 100 | 450 | 45,000 | 45,000 |  | 45,000 | 45,000 | 45,000 | 45,000 | 45,000 |
| 2 | Cost of annual Ploughing | 3 | 800 | 2,400 | 2,400 |  | 2,400 | 2,400 | 2,400 | 2,400 | 2,400 |
| 3 | Manure and fertilizer | LS | - | - | - |  | 1,375 | 1,375 | 5,500 | 5,500 | 5,500 |
|  | Sub-Total |  |  |  |  |  | 48,775 | 48,775 | 52,900 | 52,900 | 52,900 |
|  | Total ( $\mathrm{A}+\mathrm{B}$ ) |  |  |  |  | 98,156 | 48,775 | 48,775 | 52,900 | 52,900 | 52,900 |

Tree crop duration : 12 years ; Average maintenance cost per year from $6^{\text {th }}$ year to $12^{\text {th }}$ year: ₹ 42,150 ; Harvesting cost at $12^{\text {th }}$ year: ₹ $5,62,500$

| SI.No | Particulars | Unit | Value |
| :---: | :--- | :---: | :---: |
| 1. | Yield/tree | Kg | 750 |
| 2. | Yield / ha | Tonnes | 468.75 |
| 3. | Price per tonne | $₹$ | 12,000 |
| 4. | Income | $₹$ | $56,25,000$ |

Yield and Income





Felling and conversion cost at $25^{\text {th }}$ year: ₹ $1,94,500$ Heart wood extraction at $25^{\text {th }}$ year: ₹ $2,91,750$

Tree crop duration : 25 years
Average maintenance cost per year from $6^{\text {th }}$ year to $25^{\text {th }}$ year: ₹ 93,000
Tree crop duration : 40 years ; Average maintenance cost per year from $11^{\text {th }}$ year to $40^{\text {th }}$ year: ₹ 58,150
A.Cost of Establishment
Cost of initial ploughing Alignment and Digging of pits ( 4 m X 4 m ), 5 feet depth Cost of planting material
 Casualty replacement Cas Fertilizer application (50 g DAP / pit, 25 g k / pit, $5 \mathrm{~kg} \mathrm{~g} \mathrm{fym} / \mathrm{pit}$ and 50 g VAM / pit)

## Sub-Total

## B.Cost of Maintenance

Cost of annual ploughing
Irrigation and maintenance
Fertilizer and protection expenses Soil working
Sub-Total
Total (A+B) $\begin{array}{ll}\circ & \circ \\ \infty & \stackrel{\circ}{4} \\ \infty & \circ \\ \text { に } \\ \text { 苞 }\end{array}$

Harvesting cost has been calculated separately and is given in the table below

Amount in(₹)

| SI.No | Year of harvest | Harvesting cost |
| :---: | :---: | :---: |
| 1. | 4 | 90,000 |
| 2. | 7 | $1,20,000$ |
| 3. | 10 | $1,20,000$ |
| 4. | 13 | $1,20,000$ |
| 5. | 16 | $1,20,000$ |
| 6. | 22 | $1,20,000$ |
| 7. | 25 | $1,20,000$ |
| 8. | 28 | $1,20,000$ |
| 9. | 31 | $1,20,000$ |
| 10. | 34 | $1,20,000$ |
| 11. | 37 | $1,20,000$ |
| 12. | 40 | $1,20,000$ |
| 13. |  | $1,20,000$ |



## 7. FISHERIES

## Fisheries : Inland

| Activities | Unit Size | Cost(₹) | Repayment Period |
| :--- | :---: | :---: | :--- |
| Composite Fish Culture <br> (Catla, Rohu, Mrigal) | 1 Ha. | $8,50,000$ | 7 years <br> Gestation period : 10 months <br> Repayment : Annually |
| Fw Prawn Culture <br> (M rosenbergii) | 1 Ha. | $10,00,000$ | 7 years <br> Gestation period : 10 months <br> Repayment : Annually |
| Fish Seed Rearing Unit | 1 Ha. | $9,82,400$ | 6 years <br> Gestation period $: 5$ months <br> Repayment : Monthly or <br> Quarterly |

Costal Aquaculture and Mariculture

| Activities | Unit Size | $\operatorname{Cost}(₹)$ | Repayment Period |
| :---: | :---: | :---: | :--- |
| GIF Tilapia culture | 1 Ha. | $10,66,500$ | 7 years <br> Gestation period $: 6$ months <br> Repayment $:$ Half Yearly |



## Shrimp farming per ha (SPF L.vannamei)

(Assumptions : 120 days crop; 60/sq.m stocking, 70\% survival and 1.5 FCR)

| S.No | Particulars | Unit | Cost (₹) |
| :---: | :---: | :---: | :---: |
| A | Investment | - | - |
| 1 | Pond Construction | LS | 7,00,000 |
| 2 | Water Pumps 7.5 HP | 1 No | 40,000 |
| 3 | Diesel pump / Generator | 1 No | 40,000 |
| 4 | Aerators 2HP | 5 Nos | 1,50,000 |
| 5 | Pump house/Farm shed | 1 No | 1,00,000 |
| 6 | Civil work-In let / Out let Sluices | LS | 80,000 |
| 7 | Pipes, wiring etc | LS | 50,000 |
| 8 | Interest payments and Misc | LS | 50,000 |
|  | Total Fixed Costs |  | 12,10,000 |
| B | Operational Expenses |  |  |
| 1 | Pond preparation including liming |  | 40,000 |
| 2 | Repairing and renovation of electrical and water supply |  | 20,000 |
| 3 | Land lease value for 4 months |  | 50,000 |
| 4 | Seed (6,00,000 no stocking per ha @ ₹ 0.30 per seed) |  | 1,80,000 |
| 5 | Feed (1.5 FCR and ₹ 95/kg) |  | 10,00,000 |
| 6 | Other inputs(Chemicals and fertilizers, Disease control) |  | 2,10,000 |
| 7 | Electricity (₹ 8 per unit for 12000+ units) |  | 1,00,000 |
| 8 | Labour |  | 80,000 |
| 9 | Minor items Nets |  | 15,000 |
| 10 | Lab/Technician charges |  | 1,50,000 |
| 11 | Harvest charges |  | 30,000 |
| 12 | Diesel/fuel |  | 30,000 |
| 13 | Interest payments and Misc |  | 50,000 |
|  | Total Variable costs |  | 19,55,000 |
|  | Total Cost |  | 31,65,000 |
| C | Output and Income (one cycle) |  |  |
| 1 | Harvest |  | 7,500 |
| 2 | Price |  | 325 |
| 3 | Gross return |  | 24,37,500 |
| 4 | Net return over variable expenses |  | 4,82,500 |

Repayment period : 7 years, Gestation period : 6 months, Repayment : Half yearly

## Ornamental Fisheries

| Activities | Unit Size / <br> Specifications | Cost(₹) |
| :---: | :---: | :---: |
| Ornamental Fish - | 300 sq mts Area | $8,00,000$ |
| Medium scale unit |  |  |

Freshwater Backyard Ornamental Fish rearing unit (4-9 cycles/ year)

| SI.No | Item |  | Amount (₹) |
| :---: | :---: | :---: | :---: |
| 1. | Cement Tanks | Cement tanks including storage tanks Minimum 6 Nos - each 3000 l | 1,10,000 |
| 2. | Shed Cost | Structure with cemented, brick wall, asbestos/ metal/RCC and plastic green house with roll up slides, heat and ventilation in hilly areas |  |
| 3. | Live feed facility and feed maker | Cement tanks / FRP tanks, glass tanks for stock culture |  |
| 4. | Glass tanks | Aquarium tanks including stand <br> (minimum 6 Nos -each 150 l ) | 40,000 |
| 5. | Water supply items | Water line pipes, motor and pumps, hose and its fitting | 25,000 |
| 6. | Electrical items | Wiring material, lightening and its fixtures, submersible heaters, etc. | 35,000 |
| 7. | Water treatment equipment | Biological filters, carbon filters, RO units, etc. | 10,000 |
| 8. | Life saving equipments | Oxygen cylinders, aerator, compressor /Airblower, shade nets, netting for each tank, hand nets, packing machine, etc. | 30,000 |
|  |  | Total Capital Cost (A) | 2,50,000 |
| 9. | Brood stock fish |  | 10,000 |
| 10. | Feed |  | 6,000 |
| 11. | Labour Cost |  | 20,000 |
| 12. | Power and fuel |  | 5,000 |
| 13. | Packing and Transport |  | 5,000 |
| 14. | Miscellaneous |  | 4,000 |
|  |  | Total Operational Cost (B) | 50,000 |
|  |  | Total cost involvement (A+B) | 3,00,000 |

## Sea Cage Farming




Assumption/unit cage

| SI.No | Particulars | Amount / Quantity |
| :--- | :--- | ---: |
| 1 | Stocking Density | 900 Nos |
| 2 | Survival | $90 \%$ |
| 3 | Weight at Harvesting | 3 kg |
| 4 | Feed Conversion Ratio | $1: 1.6$ |
| 5 | Total Harvest | 2400 kg |
| 6 | Sale price of the Produce (₹ per kg) | 350 kg |
| 7 | Gross Income from the harvest $(₹)$ | $8,40,000$ |
| 8 | Gross Profit (Gross income - Operational expenses) $(₹)$ | $3,26,000$ |

## Seaweed Farming

## Model I : Cluster of 3 beneficiaries with 135 bamboo rafts (@45 rafts / beneficiary)

## A. Parameters

## SI.No

Particulars
1 No.of beneficiaries per cluster
2 No.of rafts per beneficiary 45
3 Total no.of rafts/cluster 135
4 Crop duration per cycle 45 days
5 No.of crop cycles in a year 5
6 Total seaweed harvested from one raft(kg) 200
7 Total Seed stock required for re-plantation of one raft(kg) 50
8 Net produce from one raft after deducting seed stock (kg) 150
9 Annual seaweed production from 135 rafts (after retaining 50 kg 1,01,250 seed stock / raft for next crop (wet weight in kg)
10 Total dried seaweed production @ $10 \%$ of wet weight) (dry weight in kg) 10,125
$11 \quad$ Price of dried seaweed (₹ per kg) 40

## B.Estimated Project Costs \& Returns :

## SI.No

## Particulars

Amount (₹)
1 Capital Cost (for 135 rafts) @ ₹ 2000/- per raft 2,70,000
2 Recurring Cost for 1st Cycle (for 135 rafts, including 67,500 seed stock cost) @ ₹ 500 per raft
3 Total capital cost 3,37,500
4 Recurring Cost from 2nd to 5th Cycle (for 135 rafts, excluding seed 1,35,000 stock cost) @ ₹ 250/Raft/cycle)
5 Total Cost for first year (SI. No. 1+2+4) 4,72,500
6 Gross Revenue (Table A, SI.No.10x11) 4,05,000
7 Recurring cost from 2nd year onwards (@₹ 250/- per raft 1,68,750 for 135 rafts for 5 cycles)
8 Net Revenue from 2nd year onwards (SI.No.6-7) 2,36,250
9 Net Income per person/month in a cluster(2nd year onwards) 6,563 (₹ 236250/in 12 months for 3 persons)

## Model II : Cluster of 3 beneficiaries with 45 monoline units (@ 15 units of monoline/beneficiary)

## A. Parameters :


1 No.of beneficiaries per cluster ..... 3
2 No.of rafts per beneficiary ..... 15
3 Total no.of rafts/cluster ..... 45
4 Crop duration per cycle ..... 45 days
5 No.of crop cycles in a year ..... 5
6 Total seaweed harvested from one raft(kg) ..... 1,200
$7 \quad$ Total Seed stock required for re-plantation of one raft(kg) ..... 250
8 Net produce from one raft after deducting seed stock (kg) ..... 950
9 Annual seaweed production from 45 monolines (after retaining 250 kg ) ..... 2,13,750seed stock / monoline for next crop (wet weight in kg )(for 5 crops)
10 Total dried seaweed production (@ $10 \%$ of wet weight) (dry weight in kg) ..... 21,375
11 Price of dried seaweed (₹ per kg) ..... 40
B.Estimated Project Costs \& Returns :
SI.No
Particulars
Amount (₹)
1 Capital Cost (for 45 monolines) @ ₹ 8000/- per monoline ..... 3,60,000
2 Recurring Cost for 1st Cycle (for 45 monolines, ..... 1,29,375including seed stock cost)@2875 per monoline
3 Total capital cost ..... 4,89,375
4 Recurring Cost from 2nd to 5th Cycle ..... 1,80,000
(for 45 monolines, excluding seed stock cost)@ 1000/monoline
5 Total recurring cost for first year (2+4) ..... 3,09,375
6 Total cost for one year (SI. No 3+4) ..... 6,69,375
7 Gross Revenue (Table A, SI.No.10x11) ..... 8,55,000
8 Recurring cost for 2nd year onwards ..... 2,25,000
(@ ₹ 1000/monoline for 45 monolines for 5 crops)
9 Net Revenue from 2nd year onwards (SI.No.7-8) ..... 6,30,000
10 Net Income per person/month in a cluster(2nd year onwards) ..... 17,500(₹ 630000 in 12 months for 3 persons)

## Fishing Crafts \& Gears

| Item of Investment | Unit / Rate | Cost ${ }^{\text {F }}$ ) |
| :---: | :---: | :---: |
| Fibre Reinforced Plastic (FRP) Catamaran | Size: 18 ft . | 75,000 |
| Fibre Reinforced Plastic (FRP) Catamaran | Size: 28 ft .7 years <br> Gestation period: 10 months. <br> Repayment: Annually | 1,50,000 |
| Plank Built Boat (Vallam) | Size: upto 30 ft . | 2,00,000 |
| Out Board Motor (OBM) for Catamaran | 6 HP | 75,000 |
| Out Board Motor for Vallam | 9.9 HP | 1,46,000 |
| Fishing Gears-cost includes cost of webbing, ropes, floats, sinkers, etc. |  |  |
| Vallam | 120 kg @ ₹ 600 / kg | 72,000 |
| Gill net | 120 kg @ ₹ 600 l kg | 72,000 |
| FRP Catamaran (Size: 18 ft .) with OBM of 6 HP and Fishing Gears | Cost of FRP Catamaran, OBM, Gears (2 nos.), running cost, crew expenses (3 persons) for first month | 3,50,000 |
| FRP Catamaran (Size: 28 ft .) with OBM of 6 HP and Fishing Gears | Cost of FRP Catamaran, OBM, Gears (2 nos.), running cost, crew expenses ( 4 persons) for first month | 5,50,000 |
| Vallam with OBM of 9.9 HP and Fishing Gears | Cost of Vallam, OBM, Gears (2 nos.), running cost, crew expenses (5 persons) for first month | 6,20,000 |

## 8. RENEWABLE SOURCE OF ENERGY AND WASTE MANAGEMENT

 (Amount in ₹)|  <br> Waste Management | Unit | Deenabandhu Model | KVIC Model |
| :--- | :---: | :---: | :---: |
| Biogas 2 Cum | Nos. | 26,000 | 25,000 |
| Biogas 3 Cum | Nos. | 35,000 | 35,000 |
| Biogas 4 Cum | Nos. | 45,000 | 40,000 |
| Biogas 4 Cum | Nos. | 60,000 | 60,000 |
| Solar Pumpsets | Nos. | 30,000 |  |
| DSWHS 100 Lpd | Nos. | $2,50,000$ |  |
| NDSWHS 1000 Lpd |  |  |  |
| Photo Voltaic and Thermal and | Nos. | 30,000 |  |
| Decentralised applications |  |  |  |


| Other Activities | Unit | Cost (Amount in ₹.) |
| :--- | :--- | :---: |
| Pair of Bullocks | Pair | 70,000 |
| Bullock cart | No. | 60,000 |



## 9. INTEGRATED FARMING SYSTEMS (IFS)

Integrated Farming System (IFS) is a combination of agriculture and allied activities being practiced in a given piece of land by the farmer. It ensures distribution of risk and assures a guaranteed return from most of the activities. This apart, the activities compliment and supplement each other. The combination of activities cannot be the same for all locations as the requirements of the activities differ and the same may not be met in all types of agricultural land. Hence, a bouquet of activities suitable for wetlands, gardenland and dryland is prescribed by the TNAU. Bankers can finance a set of activities under IFS as per the nature of farming land the farmer possesses. The prescribed activities and their costing are as follows:

## A.Wetland based Integrated farming system (1.0 acre)

Crop + Fish + Cow + Poultry/duck + Mushroom + Kitchen garden + Fruit trees(Border) + Vermicompost

| Component | Unit Size | Cost (Amt. in ₹) |
| :--- | :--- | :---: |
| Crop | Rice, Maize, Pulses, banana, |  |
| Cow | green manure, vegetables etc., | 40,000 |
| Goat | One milch cow along with one calf | 50,000 |
| Fish pond construction | 5 female +1 male | 55,000 |
| Poultry | 5 cents (20 x 10 x 1.5 m3 size ) | 5,000 (Cage cost) |
| Duck | 15 Nos. desi birds / layers | 15,000 (Shed cost) |
| Mushroom | 25 Nos. | 10,000 (Shed cost) |
| Kitchen garden | Production : 2kg/day | - |
| Fruit trees | Around fish pond (seasonal vegetables) | - |
| Inputs | Coconut, banana etc., | 15,000 |
| Vermicompost | Seeds, fingerlings, concentrated feed, |  |

* Cost may vary according to selection of enterprises



## B.Gardenland based Integrated farming system (1.0 acre)

Crop + Horticulture (Fruit trees) + Cow + Goat / Poultry + Kitchen garden + Border Planting + Vermicompost (1.0 acre)

| Component | Unit Size | Cost (Amt. in ₹) |
| :---: | :---: | :---: |
| Crop(Cereals, pulses, oil seeds, Commercial crops, green manure) | Cropping including fodder (C.N. grass + Desmanthus) | - |
| Cow | One milch cow along with one calf | 40,000 |
| Goat | 5 female + 1 male | 50,000 |
| Poultry (Backyard) | 15 Nos. desi birds / layers | 5,000 (shed cost) |
| Horticulture | Fruit trees in border / 10 cents area (Coconut,sapota, guava, amla, banana, papaya etc., based on soil type) | 5,000 |
| Border Planting | Agathi, Annual morings, curry leaf etc., | 2,500 |
| Kitchen garden | Vegetables and greens (1 cent) |  |
| Inputs | Seeds, fingerlings, concentrated feed, birds, saplings etc., | 15,000 |
| Vermicompost | Silpaulin/ Compost pit | 2,500 |

* Cost may vary according to selection of enterprises


## C.Dryland based Integrated farming system (1.0 acre)

Crop + Horticulture (Fruit trees) + Agroforestry + Goat/sheep + Farm pond + Vermicompost (1.0 acre)

| Component | Unit Size | Cost (Amt. in ₹) |
| :--- | :--- | :---: |
| Crop(Cereals, pulses, oil seeds, | 90 per cent area may be allocated for <br> cropping including fodder <br> Commercial crops) <br> (Cenchrusciliaris, desmanthus, tree | - |
| Cow | One milch cow along with Calf | 40,000 |
| Goat (Tellichery / local) | 5 female + 1 male | 50,000 |
| Sheep (Mecheri/local breed) | 10 female + 1 male | 90,000 |
| Horticulture | Arid Fruit cropes (Amla, Ber, Sapota) | 5,000 |
| Agroforestry | Timber and fodder trees | 10,000 |
| Farm pond | $30 \times 10 \times 1.5 \mathrm{~m}$ | 75,000 |
| Inputs | Seeds, concentrated feed, tree saplings etc., | 10,000 |
| Vermicompost | Silpaulin / compost pit | 2,500 |
| (depending upon water availability) |  |  |

[^0]| Sr No | Name of the Cluster office | Name of the Districts covered | Name of the Officer posted in Cluster Office | Desig nation | Mobile No. | E-mail |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| 1 | Chennai Metro | Chennai | E Raju | AGM | 9940341205 | chennaimetro.cluster@nabard.org |
|  |  | Chengelpattu |  |  |  |  |
|  |  | Tiruvallur |  |  |  |  |
|  |  | Ranipet | Arun Vijay | AGM | 6385784599 |  |
|  |  | Vellore |  |  |  |  |
|  |  | Kancheepuram | M Vijay Neehar | MGR | 9009305215 |  |
|  |  | Tiruvannamalai |  |  |  |  |
| 2 | Pondicherry | UTP | R V Sidharthan | MGR | 7299790400 | pondicherry.cluster@nabard.org |
|  |  | Cuddalore |  |  |  |  |
|  |  | Villupuram | K Balamurugan | AGM | 9600095389 |  |
|  |  | Kallakurichi |  |  |  |  |
| 3 | Salem | Salem | K.K.Narmada | MGR | 6382286435 | salem.cluster@nabard.org |
|  |  | Krishnagiri | S. Ramesh | MGR | 9952863594 |  |
|  |  | Namakkal |  |  |  |  |
|  |  | Dharmapuri | Praveen Babu | MGR | 9597221108 |  |
|  |  | Tirupathur |  |  |  |  |
| 4 | Tiruchirappalli | Tiruchirappalli | Mohan Karthik N M | MGR | 9790235550 | tiruchirapalli.cluster@nabard.org |
|  |  | Karur |  |  |  |  |
|  |  | Ariyalur | Prabaharan B | AGM | 9791137922 |  |
|  |  | Perambalur |  |  |  |  |
| 5 | Pudukkottai | Pudukkottai | Deepak Kumar R | MGR | 8848596797 | pudukottai.cluster@nabard.org |
|  |  | Mayiladuthurai | Anish Kumar G S | MGR | 9789597761 |  |
|  |  | Thanjavur |  |  |  |  |
|  |  | Tiruvarur | Viswanth Kanna | MGR | 7558129622 |  |
|  |  | Nagapattinam |  |  |  |  |
| 6 | Madurai | Madurai | Sakthibalan | MGR | 9003619210 | madurai.cluster@nabard.org |
|  |  | Theni |  |  |  |  |
|  |  | Dindigul | Harish V | MGR | 9940189717 |  |
| 7 | Virudhnagar | Virudhunagar | Rajasureshwaran B | MGR | 9994665692 | virudhunagar.cluster@nabard.org |
|  |  | Sivagangai |  |  |  |  |
|  |  | Ramanathapuram | Arun Kumar | MGR | 9324863269 |  |
| 8 | Tirunelveli | Thoothukudi | Suresh Ramalingam RK | AGM | 8691999873 | tirunelveli.cluster@nabard.org |
|  |  | Kanyakumari |  |  |  |  |
|  |  | Tirunelveli | Sashi Kumar B | MGR | 8291050808 |  |
|  |  | Tenkasi |  |  |  |  |

Stand Alone DDM with Tagged district

| 9 | Erode | Erode | Shri Ashok Kumar T | MGR | 8667329206 | erdoe@nabard.org |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Tirupur - Tagged | Tirupur - Tagged |  |  |  |  |
| 10 | Coimbatore | Coimbatore | Shri Thirumala Rao C | AGM | 8108703105 | Coimbatore@nabard.org |
|  | Nilgiris - Tagged | Nilgiris - Tagged |  |  |  |  |

Notes

## NABVENTURES Limited

Wholly owned subsidiary of NABARD

## Investment Focus

> Sector Focus - Food/foodtech, Agritech, Agri/rural fintech and Rural enablers (Edutech, Health-tech, Ecommerce, etc.).
, Stage- Pre-Series A (INR 5-20 crore) and Series A (INR 20-50 crore).
, Pre-Series A deals have strong focus on

Agtech, Healthtech \& Edutech.
Sector of interest in Series A include consumer food brands, financial services, rural asset, light tech businesses.
, The fund takes significant minority / minority positions.

Registered Office: NABARD, 2nd Floor A Wing, Plot No. C-24, G Block, BKC, Bandra (East), Mumbai 400051. India $\boxtimes$ e-mail : nabventure@nabard.org () Phone: 91-22-26539357

## NABSAMRUDDHI FINANCE Limited A Subsidiary of NABARD

"The objective of NABSAMRUDDHI is to provide credit facilities to individuals and legal entities in the off farm sector, microfinance, MSME and for the promotion, expansion, commercialization and modernization of agriculture and allied activities."

Corporate Office:
NABARD, Gr. Floor, D Wing,
C-24, G Block,BKC, Bandra East,
Mumbai-400051
Ph: 022-26539486/9693
«e-mail: nabsamruddhi@nabard.org

| , MSME | , Housing |
| :--- | :--- |
| , Microfinance | , Education |
| , Small Business | , Livelihoods |
| , Transportation | , Agriculture |

## Registered Office:

NABARD, Regional Office 1-1-61, RTC'X' Road, P.B. No. 1863
Hyderabad-500020, Telangana
Ph: 040-23241155
(*) Website: www.nabsamruddhi.in

## NABFOUNDATION

NABFOUNDATION is a wholly owned, not for profit, subsidiary of NABARD, established under Sec 8 of Companies Act, 2013. The young organization draws its strength and experience from the thousands of development projects grounded by its parent body, NABARD, in multiple domains over nearly last four decades.

## What does NABFOUNDATION want from you ?

## IF YOU ARE AN INDIVIDUAL

Reach out to us with your ideas about development projects which you believe need to be implemented. We really look forward to your fresh ideas.

## IF YOU ARE A CSR UNIT

Of a corporate and believe that there is a scope for collaborating with us to have access to the vast network of resources of NABARD in a structured manner, just give us a call.

IF YOU ARE A CIVIL SOCIETY ORGANIZATION/NGO
With an idea whose time you think has come and have not been able to find willing partners, reach out to us.

## IF YOU ARE WITH THE GOVERNMENT

And believe that there is a need for reimagining implementation of your Central or State government projects, allow us to be a part of your vision.

[^1]
## NABKISAN FINANCE Limited

A subsidiary of NABARD

| , Largest lender in FPO space. | > Financing FPOs through. |
| :---: | :---: |
| ) Present in 20+ States. | - Working Capital - Term loan |
| , 700+ FPOs credit linked. | - Pledge Financing (eNWR) |
| , Collateral free lending at affordable rates. | ) Term lending for Corporates/ NBFCs/ MFIs. |
| , Need Based Grant support. | > Soft loans for Agri Startups. |
| Corporate Office | Registered Office |
| C/o NABARD, Mumbai | C/o NABARD, Tamil Nadu RO, Chennai |
| ® e-mail:corporate@nabkisan.org | e-mail:finance@nabkisan.org |
| (6) Phone:022-26539620/26539415 | (C) Phone:044-28270138/28304658 |
| (*) Website-www.nabkisan.org | Web-portal-krishimanch.nabkisan.org |

NABARD Consultancy Services Private Limited [NABCONS]
Wholly owned subsidiary of NABARD
ISO-9000:2015 \& ISO-27001:2013

| OFFERS | AREAS OF OPERATION |  |
| :--- | :--- | :--- |
| CONSULTANCY | , Agriculture \& Allied Activities | , Natural Resource Management |
| AND | , Off-farm Sector | , Food Processing |
| ADVISORY | , Horticulture | , Banking \& Finance |
| SERVICES | , Forestry | , Skills for Livelihood |
| Pan India | , Corporate Social Responsibility | , International Business |
| Presence with | , Watershed Development | , Value Chain Development |
| offices in 31 | , Irrigation \& Water Resources | , Infrastructure Monitoring |
| States/UTs | , Socio-economic Development | s Climate Change |

Registered Office
NABARD, C-24, G Block
BKC, Bandra East, Mumbai-400051
Ph: 022-26539396
e-mail:headoffice@nabcons.in

## NABFINS Limited

## A Subsidiary of NABARD

>A Non Deposit taking Systemically Important NBFC MFI with a vison to become a model MFI in the country.
> $63 \%$ of shares held by NABARD, with other shareholders being Government of Karnataka and Public Sector Banks.
> Mission - To be a trusted client centric financial institution advancing hassle free services to the low income households and the unorganised sector.

## Corporate Office

NABARD Tower, 24 Rajendra Place,
Nabard Building, New Delhi110125
Ph: 011-25745101

* Website:www.nabcons.com
> The company has a range of financial products and services including financing of SHGs in partnership with NGOs and JLGs directly through its branches.
> Operating across in 16 States of India and touching lives of more than 5.50 lakh
 households with a commitment towards their socio-economic empowerment and furthering the cause for financial inclusion.

Registered Office: \#3072, 14th Cross, K R Road, Banashankari 2nd stage, Bengaluru - 560 070, Karnataka, India
«e-mail:ho@nabfins.org
(C) Phone: 08026970500
\# www.nabfins.org

## NAB सरक्षण

Trustee Private Limited
Corporate Office
NABARD C-24,
G Block, BKC, Bandra East, Mumbai-400051
Ph:022-26539410/26537039

Established to manage various credit guarantee funds of Government of India, State Government etc.
NABSanrakshan and multiple credit guarantee funds under its management housed in separate Trusts.
The Eligible Lending Institutions will extend formal credit to the borrowers and

NABSanrakshan through various schemes of the Trusts will provide credit guarantee against a nominal fee.
, NABSanrakshan manages Credit Guarantee Fund under Animal Husbandry Infrastructure Development Fund (AHIDF).


[^0]:    * Cost may vary according to selection of enterprises

[^1]:    e-mail:nabfoundation@nabard.org
    (C) Phone:(+91)-22-2653 9404/9054/9204

